Разработка конструкции пневмогидравлического привода гидравлического аварийно-спасательного инструмента

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В статье рассмотрены существующие типы приводов гидравлического аварийно-спасательного инструмента, применяемого для проведения специальных работ на пожаре и при ликвидации последствий дорожно-транспортных происшествий. Выявлены основные недостатки существующих приводов. Предложена и описана новая конструкция привода, где в качестве источника энергии используется сжатый воздух из баллонов дыхательных аппаратов газодымозащитников. Представлена трехмерная модель сконструированного привода. Приведены основные технические параметры разработанной конструкции и результаты проведенных испытаний опытного образца.

Texto integral

Acesso é fechado

Sobre autores

В. Киселев

Ивановская пожарно-спасательная академия ГПС МЧС России

Autor responsável pela correspondência
Email: slavakis76@mail.ru
Rússia, Иваново

А. Топоров

Ивановская пожарно-спасательная академия ГПС МЧС России

Email: slavakis76@mail.ru
Rússia, Иваново

Bibliografia

  1. Лавриненко Д. Ф., Петренко П. П., Баринов М. Ф., Мясников Д. В. Основы применения аварийно-спасательного инструмента и оборудования: учеб. пособие. Химки: Академия гражданской защиты МЧС России, 2014. 124 с.
  2. Руководство по эксплуатации гидравлического аварийно-спасательного инструмента «Ермак» Красноармейск, НПО «Простор», 2013. 26 с.
  3. Гулиа Н. В. Накопители энергии. М.: Наука, 1980. 152 с.
  4. Карабин А. И. Сжатый воздух. Выработка, потребление, пути экономии. М.: Наука, 1964. 341 с.
  5. Шипилов Р. М., Захаров Д. Ю., Литов К. М. Определение расхода дыхательных ресурсов при работе газодымозащитника с использованием пневмогидравлического привода гидравлического аварийно-спасательного инструмента // Современные проблемы гражданской защиты. 2020. № 2 (35). С. 122.
  6. Киселев В. В., Топоров А. В., Зарубин В. П. и др. Особенности применения пневмогидравлического привода гидравлического аварийно-спасательного инструмента в летний и зимний периоды // Техносферная безопасность. 2020. № 2 (27). С. 57.
  7. Дьяконов О. Б., Крудышев В. В., Филиппов А. В. Оценка эффективности применения пневмогидравлических насосов в комплектах аварийно-спасательного инструмента // Техносферная безопасность. 2019. № 1 (22). С. 3.
  8. Marcinek M., Marková I. Working Effectiveness of Hydraulic Rescue Equipments for Firefighters // Adv. Mater. Res. 2014. V. 1001. P. 517.
  9. Casey C., Grant P. E., Merrifield B. Assessment of Powered Rescue Tool Capabilities with High-Strength Alloys and Composite Materials: Final Report; The Fire Protection Research Foundation: Quincy, MA, USA, 2011.
  10. Prasuła J. Checking and testing pressure strength of hydraulic rescue tools and their accessories and pneumatic rescue bags // Bezpieczenstwo i Technika Pozarnicza. 2007. V. 8 (4). P. 33.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Hydraulic tool carrier with pneumohydraulic actuator of knapsack design.

Baixar (57KB)
3. Fig. 2. Design of pneumohydraulic drive of hydraulic tool: 1 - body; 2 - tank for hydraulic fluid; 3 - cylinders with compressed air; 4 - suspension system; 5 - low pressure lines; 6 - high pressure lines; 7 - pneumohydraulic pump; 8 - reducer for cylinder; 9 - valve; 10 - hydraulic tool.

Baixar (76KB)
4. Fig. 3. Overbiting of steel reinforcement.

Baixar (204KB)
5. Fig. 4. Clamping lifting of a reinforced concrete slab.

Baixar (223KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025