Increasing the Frequency Resolution when Measuring Vibrations of Rotating Bodies with Fixed Beam Laser Vibrometry

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Laser Doppler vibrometry is actively used in experimental studies because of its noncontact measurement technique. When using a stationary laser to measure the vibrations of rotating bodies and Fourier transform to process the results of such measurements, a problem arises, associated with a decrease in the frequency resolution of the spectra with increasing rotation rate of the body. As a result, at sufficiently high rotation rates, closely spaced discrete components may cease to be resolved. This paper proposes a method for solving such a problem using the least squares method. The operability of this processing method has been demonstrated on experimental data.

Sobre autores

V. Artelnyi

Institute of Applied Physics, Russian Academy of Sciences, 603155, Nizhny Novgorod, Russia

Email: stulenkov@ipfran.ru
Россия, 603155, Нижегородская обл., Нижний Новгород, ул. Ульянова 46

A. Rodionov

Institute of Applied Physics, Russian Academy of Sciences, 603155, Nizhny Novgorod, Russia

Email: stulenkov@ipfran.ru
Россия, 603155, Нижегородская обл., Нижний Новгород, ул. Ульянова 46

A. Stulenkov

Institute of Applied Physics, Russian Academy of Sciences, 603155, Nizhny Novgorod, Russia

Autor responsável pela correspondência
Email: stulenkov@ipfran.ru
Россия, 603155, Нижегородская обл., Нижний Новгород, ул. Ульянова 46

Bibliografia

  1. Johansmann M., Fritzsche M., Schell J. A new method for measurement of rotating objects utilizing laser Doppler vibrometry combined with an optical derotator with focus on automotive applications // SAE Technical Paper Series. 2011. https://doi.org/10.4271/2011-26-0043
  2. Gasparoni A., Allen M.S., Yang S., Sracic M.W., Castellini P., Tomasini E.P. Experimental Modal Analysis on a Rotating Fan Using Tracking-CSLDV // AIP Conference Proceedings. 2010. V. 1253. № 3.
  3. Abbas S.H., Jang J.-K., Kim D.-H., Lee J.-R. Underwater vibration analysis method for rotating propeller blades using laser Doppler vibrometer // Optics and Lasers in Engineering. 2020. V. 132. P. 106133.
  4. Lutzmann P., Göhler B., Hill C.A., van Putten F. Laser vibration sensing at Fraunhofer IOSB: review and applications // Opt. Eng. 2016. V. 56. № 3. P. 031215.
  5. Reinhardt A.K., Kadambi J.R., Quinn R.D. Laser vibrometry measurements of rotating blade vibrations // J. Engineering for Gas Turbines and Power. 1995. V. 117. № 3. P. 484–488.
  6. Kulczyk W.K., Davis Q.V. Laser Doppler instrument for measurement of vibration of moving turbine blades // Proc. of the Institution of Electrical Engineers. 1973. V. 120. № 9. P. 1017–1023.
  7. Cookson R.A., Bandyopadhyay P. Fiber-optic laser-Doppler probe for vibration analysis of rotating machines // J. Engineering for Power. 1980. V. 102. № 3. P. 607–612.
  8. Oberholster A.J., Heyns P.S. Online condition monitoring of axial-flow turbomachinery blades using rotor-axial Eulerian laser Doppler vibrometry // Mechanical Systems and Signal Processing. 2009. V. 23. № 5. P. 1634–1643. https://doi.org/10.1016/j.ymssp.2009.01.001
  9. Oberholster A.J., Heyns P.S. Eulerian laser Doppler vibrometry: Online blade damage identification on a multi-blade test rotor // Mechanical Systems and Signal Processing. 2011. V. 25. № 1. P. 344–359. https://doi.org/10.1016/j.ymssp.2010.03.007
  10. Oberholster A.J., Heyns P.S. A study of radial-flow turbomachinery blade vibration measurements using Eulerian laser Doppler vibrometry // AIP Conference Proceedings. 2014. V. 1600. № 1. P. 23–32. https://doi.org/10.1063/1.4879565
  11. Castellini P., Tomasini E.P. Image-based tracking laser Doppler vibrometer // Review of Scientific Instruments. 2004. V. 75. № 1. P. 222–232. https://doi.org/10.1063/1.1630859
  12. Марпл-мл. С.Л. Цифровой спектральный анализ и его приложения: Пер. с англ. М.: Мир, 1990. 584 с.
  13. Турчин В.И. Введение в современную теорию оценки параметров сигналов. Нижний Новгород: ИПФ РАН, 2005. 116 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (494KB)
3.

Baixar (387KB)
4.

Baixar (388KB)
5.

Baixar (101KB)
6.

Baixar (114KB)

Declaração de direitos autorais © В.В. Артельный, А.А. Родионов, А.В. Стуленков, 2023