Interference of echo-signals from spherical scatterers located near the seabed

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper investigates the impact of the seabed on the echo signal from spherical scatterers. The seabed is modeled as a liquid absorbing half-space. The transmitter/receiver is located in the water half-space. The distance between the transmitter/receiver and the scatterer is assumed to be large compared to the wavelengths of acoustic waves in water and the seafloor. Numerical results are obtained for acoustically rigid spherical scatterers of the same radius. Interaction between the scatterers is not taken into account. The echo signal from a single sphere over a wide frequency range is computed using a method proposed by R.H. Hackman and G.S. Sammelmann, with a crucial step being the computation of the scattering coefficients of the sphere. Asymptotic formulae obtained using the saddle-point method are used in the paper to compute these coefficients. The obtained asymptotic expressions for the scattering coefficients of the sphere significantly reduce the number of summands in the formula for the form function of the echo signal.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Grigorieva

St. Petersburg State Marine Technical University

Email: nsgrig@natalie.spb.su
Ресей, Lotsmanskaya st. 3, St. Petersburg, 190008

F. Legusha

St. Petersburg State Marine Technical University

Email: legusha@smtu.ru
Ресей, Lotsmanskaya st. 3, St. Petersburg, 190008

K. Safronov

St. Petersburg State Marine Technical University

Хат алмасуға жауапты Автор.
Email: safronov.kirill.pm@gmail.com
Ресей, Lotsmanskaya st. 3, St. Petersburg, 190008

Әдебиет тізімі

  1. Allegra J.R., Hawley S.A. Attenuation of sound in suspensions and emulsions: Theory and experiments // J. Acoust. Soc. Am. 1972. V. 51. P. 1545–1564.
  2. Commander K.W., Prosperetti A. Linear pressure waves in bubbly liquids: Comparison between theory and experiments // J. Acoust. Soc. Am. 1989. V. 85. P. 732–746.
  3. Sessarego J.-P., Sageloli J. Étude théorique et expérimentale de la diffusion acoustique par deux coques sphériques élastiques // ACUSTICA — Acta Acust. 1993. V. 79. P. 14–21.
  4. Gaunaurd G.C., Huang H. Acoustic scattering by a pair of spheres // J. Acoust. Soc. Am. 1995. V. 98. P. 495−507.
  5. Folacci A., Rossi J.-L., Sessarego J.-P. GTD Analysis of Scattering by Two Elastic Spheres // ACUSTICA — Acta Acust. 1997. V. 83. P. 93–104.
  6. Bjørnø I., Jensen L.B. Numerical modelling of multiple scattering between two elastical particles // OCEAN’98 Conference Proceedings. Nice, France. 28 September–1 October 1998. V. 2. P. 598–602.
  7. Barbat T., Ashgriz N., Liu C.-S. Dynamics of two interacting bubbles in an acoustic field // J. Fluid Mech. 1999. V. 389. P. 137–168.
  8. Kapodistrias G., Dahl P.H. Effects of interaction between two bubble scatterers // J. Acoust. Soc. Am. 2000. V. 107. P. 3006–3017.
  9. Temkin S. Suspension Acoustics: An Introduction to the Physics of Suspension, 1st ed.; Cambridge University Press: Cambridge, UK, 2005.
  10. Valier-Brasier T., Conoir J.-M., Coulouvrat F., Thomas J.-L. Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory // J. Acoust. Soc. Am. 2015. V. 138. P. 2598–2612.
  11. Kubilius R., Pedersen G. Relative acoustic frequency response of induced methane, carbon dioxide and air gas bubble plumes, observed laterally // J. Acoust. Soc. Am. 2016. V. 140. P. 2902–2912.
  12. Maksimov A., Yusupov V. Coupled oscillations of a pair of closely spaced bubbles // Eur. J. Mech. Fluids. 2016. V. 60. P. 164–174.
  13. Maksimov A.O., Polovinka Y.A. Scattering from a pair of closely spaced bubbles // J. Acoust. Soc. Am. 2018. V. 144. P. 104–114.
  14. Valier-Brasier T., Conoir J.-M. Resonant acoustic scattering by two spherical bubbles // J. Acoust. Soc. Am. 2019. V. 145. P. 301–311.
  15. Grigorieva N.S., Legusha F.F., Nikushchenko D.V., Safronov K.S. Interference of echo-signals from two buried spherical targets // Acoustics. 2023. V. 5. № 2. P. 509–521.
  16. Hackman R. H., Sammelmann G. S. Acoustic scattering in an inhomogeneous waveguide: Theory // J. Acoust. Soc. Am. 1986. V. 80. P. 1447–1458.
  17. Hackman R. H., Sammelmann G. S. Multiple-scattering analysis for a target in an oceanic waveguide // J. Acoust. Soc. Am. 1988. V. 84. P. 1813–1825.
  18. Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. 343 с.
  19. Fawcett J.A. Complex-image approximations to the half-space acousto-elastic Green’s function // J. Acoust. Soc. Am. 2000. V. 108. P. 2791–2795.
  20. Fawcett J.A. A method of images for a penetrable acoustic waveguide // J. Acoust. Soc. Am. 2003. V. 113. P. 194–204.
  21. Fawcett J.A., Lim R. Evaluation of the integrals of target/seabed scattering using the method of complex images // J. Acoust. Soc. Am. 2003. V. 114. P. 1406–1415.
  22. Taraldsen G. The complex image method // Wave Motion. 2005. V. 43. P. 91–97.
  23. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. М.: Наука, 1973. 294 с.
  24. Sessarego J.-P., Cristini P., Grigorieva N.S., Fridman G.M. Acoustic scattering by an elastic spherical shell near the seabed // J. Comp. Acoust. 2012. V. 20. № 3. Р. 1250006.1–1250006.19.
  25. Kargl S.G., Marston P.L. Ray synthesis of Lamb wave contributions to the total scattering cross section for an elastic spherical shell // J. Acoust. Soc. Am. 1990. V. 88. № 3. Р. 1103−1113.
  26. Кратцер А., Франц В. Трансцендентные функции. М.: ИЛ, 1963. 467 с.
  27. Шендеров Е. Л. Излучение и рассеяние волн. Л.: Судостроение, 1989. 302 с.
  28. Григорьева Н.С., Куприянов М.С., Михайлова Д.А., Островский Д.Б. Рассеяние звуковых волн на сферическом рассеивателе, находящемся вблизи ледовой поверхности // Акуст. журн. 2016. Т. 62. № 1. С. 10–23.
  29. Григорьева Н.С., Сафронов К.С., Лукьянов В.Д. Эхо-сигнал от сферического рассеивателя, находящегося вблизи газонасыщенного дна // Труды СПбГМТУ. 2022. Т. 2. С. 122–136.
  30. Григорьева Н.С., Фридман Г.М. Рассеяние звука сферической оболочкой, помещенной в волновод с жидким дном // Акуст. журн. 2013. Т. 59. № 4. С. 424–432.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geometry of the problem. Each of the scattering spheres has its own coordinate system: for the first sphere of radius a this is , for the second sphere of radius ã this is Oyz; d is the distance between the centers of the spheres. The emitter and receiver are located at point M. Õũz

Жүктеу (75KB)
3. Fig. 2. The function of the echo signal shape reflected from an acoustically rigid sphere of radius a = 0.3 m, located in an isotropic water space; y = 50 m, z = 20 m; 40 ≤ f ≤ 60 kHz.

Жүктеу (100KB)
4. Fig. 3. The shape function of the echo signal reflected from an acoustically rigid sphere of radius a = 0.3 m, located near a sandy bottom; y = 50 m, z = 20 m, b = 5 m; (a) —40 ≤ f ≤ 60 kHz, (b) — 55 ≤ ka ≤ 60 . The dotted line is the shape function for the echo signal from a sphere located in an isotropic water space.

Жүктеу (234KB)
5. Fig. 4. The shape function of the echo signal reflected from an acoustically rigid sphere of radius a = 0.3 m, located near a sandy bottom; y = 50 m, z = 20 m, b = 1 m; (a) — 40 ≤ f ≤ 60 kHz, (b) — 55 ≤ ka ≤ 60 . The dotted line is the shape function for the echo signal from a sphere located in an isotropic water space.

Жүктеу (174KB)
6. Fig. 5. Echo signal shape function from two acoustically rigid spherical scatterers of radius 0.3 m located in isotropic water space; y = 50 m, ỹ = 45 m, z = 20 m, d = 5 m; (a) 40 ≤ f ≤ 60 kHz, (b) 55 ≤ ka ≤ 60.

Жүктеу (260KB)
7. Fig. 6. The echo signal shape function from two acoustically rigid spherical scatterers of radius 0.3 m located near the bottom; e = 50 m, ỹ = 45 m, z = z = 20 m, b = 5 m, d = 5 m; 55≤ ka ≤ 60 . The dotted line is the shape function of two spherical scatterers located in isotropic water space.

Жүктеу (122KB)
8. Fig. 7. The echo signal shape function from two acoustically rigid spherical scatterers of radius 0.3 m located near the bottom; y = 50 m, ỹ = 45 m, z = z =20 m, b = b = 1 m, d = 5 m; 55≤ ka ≤ 60 . The dotted line is the shape function of two spherical scatterers located in an isotropic water space.

Жүктеу (131KB)

© The Russian Academy of Sciences, 2024