Effect of Geometry on Flexural Wave Propagation in a Notched Bar

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The propagation of flexural elastic waves in notched metal bars with a rectangular cross section with the depth of notches increasing by a power law has been studied by numerical modeling and experimental laser scanning vibrometry. Three types of notch arrangement have been considered: uniform and more frequent and sparse towards the end of a bar. Such structures exhibit the characteristics of an acoustic black hole. For all the studied samples, in the 10–100 kHz frequency range, an increase in amplitude and decrease in length of the flexural wave have been experimentally found as a wave approaches the end of a bar. It has been shown that there is a critical frequency, above which the modes exhibit a section with highly reduced amplitude of oscillations.

Full Text

Restricted Access

About the authors

A. A. Agafonov

Lomonosov Moscow State University

Email: aikor42@mail.ru
Russian Federation, Moscow

M. Yu. Izosimova

Lomonosov Moscow State University

Email: aikor42@mail.ru
Russian Federation, Moscow

R. A. Zhostkov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: aikor42@mail.ru
Russian Federation, Moscow

A. I. Kokshaysky

Lomonosov Moscow State University

Email: aikor42@mail.ru
Russian Federation, Moscow

A. I. Korobov

Lomonosov Moscow State University

Author for correspondence.
Email: aikor42@mail.ru
Russian Federation, Moscow

N. I. Odina

Lomonosov Moscow State University

Email: aikor42@mail.ru
Russian Federation, Moscow

References

  1. Миронов М.А. Распространение изгибной волны в пластине, толщина которой плавно уменьшается до нуля на конечном интервале // Акуст. журн. 1988. Т. 34. №. 3. C. 546–547.
  2. Krylov V.V., Shuvalov A.L. Propagation of localised flexural vibrations along plate edges described by a power law // Proc. of the Institute of Acoustics. 2000. V. 22. № 2. P. 263–270.
  3. Бобровницкий Ю.И., Томилина Т.М. Поглощение звука и метаматериалы (обзор). Акуст. журн. 2018. Т. 64. № 5. С. 517–525.
  4. Pelat A., Gautiera F., Conlon S.C., Semperlotti F. The acoustic black hole: A review of theory and applications // J. Sound Vib. 2020. V. 476. P. 115316.
  5. Guasch O., Arnela M., Sánchez-Martín P. Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations // J. Sound Vib. 2017. V. 395. P. 65–79.
  6. Krylov V.V. Acoustic Black Holes: Recent Developments in the Theory and Applications // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014. V. 61. № 8. P. 1296–1306.
  7. Zhao. C., Prasad M.G. Acoustic Black Holes in Structural Design for Vibration and Noise Control // Acoustics. 2019. V. 1. P. 220−251.
  8. Gao S., Tao Z., Li Y., Pang F. Application research of acoustic black hole in floating raft vibration isolation system // Reviews on Adv. Mat. Science. 2002. V. 61. P. 888−900.
  9. Агафонов А.А., Коробов А.И., Изосимова М.Ю., Кокшайский А.И., Одина Н.И. Особенности распространения волн Лэмба в клине из АБС пластика с параболическим профилем // Акуст. журн. 2022. Т. 68. № 5. С. 467–474.
  10. Миронов М.А. Точные решения уравнения поперечных колебаний стержня со специальным законом изменения поперечного сечения // Акуст. журн. 2017. Т. 63. № 5. С. 3–8.
  11. Миронов М.А. Точные решения уравнения поперечных колебаний стержня со специальным законом изменения поперечного сечения вдоль его оси // IX Всесоюзная акустическая конференция. 1991. Секция Л. С. 23–26.
  12. Миронов М.А. Разрезной стержень как вибрационная черная дыра // Акуст. журн. 2019. Т. 65. № 6. C. 736–739.
  13. Агафонов А.А., Изосимова М.Ю., Жостков Р.А., Кокшайский А.И., Коробов А.И., Одина Н.И. Особенности распространения изгибной волны в разрезном стержне // Акуст. журн. 2024. Т. 70. № 3. С. 3–12.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General view of the split bar specimens

Download (89KB)
3. Fig. 2. Bending mode in sample No. 2 at the frequency of 8.1 kHz

Download (92KB)
4. Fig. 3. Distribution of bending wave amplitude along the centre line of the rod surface with envelopes in specimens (a) - No. 1, (b) - No. 2, (c) - No. 3

Download (272KB)
5. Fig. 4. Distribution of normalised amplitude along the rod (sample No. 1) at a special frequency (52.9 kHz)

Download (91KB)
6. Fig. 5. Bending wave length in the rod as a function of distance: (a) - sample No. 1, (b) - sample No. 2, (c) - sample No. 3

Download (236KB)
7. Fig. 6. (a) - Experimental specimens No. 1, 2, 3 and (b) - fixed rod No. 3 for excitation of bending waves in it

Download (168KB)
8. Fig. 7. AFC in cut rods with three types of slots arrangement

Download (143KB)
9. Fig. 8. Modes of bending waves in samples (a) - No. 1, (b) - No. 2, (c) - No. 3

Download (199KB)
10. Fig. 9. Length of the bending wave in a rod with an increased number of slots towards the end as a function of the distance travelled

Download (213KB)
11. Fig. 10. Straight lines separating the region of the rod near the end where the wave amplitude is small

Download (106KB)

Copyright (c) 2024 The Russian Academy of Sciences