Estimation of the amplitude-frequency response of a sound source from measurements in a tank with reflecting boundaries

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of a laboratory experiment testing a method for reconstructing a sound field excited by a calibrated source in free space from measurements of a field excited by the same source in a tank with reflecting boundaries are presented. The reconstruction procedure is based on the use of an etalon acoustic monopole and comparison of the fields emitted by it from specially selected points of the tank with the field of the calibrated source. In the experiment, the frequency dependence of the field intensity of the calibrated source averaged over a sphere of large radius was evaluated.

Texto integral

Acesso é fechado

Sobre autores

V. Bakhtin

Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University

Email: viro@ipfran.ru
Rússia, 603950, N. Novgorod, Ul’yanov str., 46; 603022, N. Novgorod, Gagarin Ave., 23

A. Virovlyansky

Institute of Applied Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: viro@ipfran.ru
Rússia, 603950, N. Novgorod, Ul’yanov str., 46

M. Deryabin

Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University

Email: viro@ipfran.ru
Rússia, 603950, N. Novgorod, Ul’yanov str., 46; 603022, N. Novgorod, Gagarin Ave., 23

A. Kazarova

Institute of Applied Physics of the Russian Academy of Sciences

Email: viro@ipfran.ru
Rússia, 603950, N. Novgorod, Ul’yanov str., 46

Bibliografia

  1. Bobber R.J. Underwater electroacoustic measurement. CA: Peninsula Press, Los Altos, 1988.
  2. Robinson S.P. Review of methods for low frequency transducer calibration in reverberant tanks. NPL Report CMAM 034. 1999.
  3. Robinson S.P., Hayman G., Harris P.M., Beamiss G.A. Signal-modeling methods applied to the free-field calibration of hydrophones and projectors in laboratory test tanks // Meas. Sci. Technol. 2018. 29:085001.
  4. Исаев А.Е., Матвеев А.Н. Градуировка гидрофонов по полю при непрерывном излучении в реверберирующем бассейне // Акуст. журн. 2009. Т. 55. № 6. С. 727–736.
  5. Исаев А.Е., Матвеев А.Н. Применение метода скользящего комплексного взвешенного усреднения для восстановления неравномерной частотной характеристики приемника // Акуст. журн. 2010. Т. 56. № 5. С. 651–654.
  6. Исаев А.Е., Николаенко А.С., Черников И.В. Подавление реверберационных искажений сигнала приемника с использованием передаточной функции бассейна // Акуст. журн. 2017. Т. 63. № 2. С. 165–174.
  7. Virovlyansky A.L., Deryabin M.S. On the use of the equivalent source method for free-field calibration of an radiator in a reverberant tank // J. Sound. Vibr. 2019. V. 455. P. 69–81.
  8. Вировлянский А.Л., Казарова А.Ю., Любавин Л.Я. Реконструкция диаграммы направленности источника звука в свободном пространстве по измерениям его поля в бассейне // Акуст. журн. 2020. Т. 66. № 5. С. 509–516.
  9. Koopmann G.H., Song L., Fahnline J.B. A method for computing acoustic fields based on the principle of wave superposition // J. Acoust. Soc. Am. 1989. V. 86. № 6. P. 2433–2438.
  10. Бобровницкий Ю.И., Томилина Т.М. Общие свойства и принципиальные погрешности метода эквивалентных источников // Акуст. журн. 1995. Т. 41. № 5. С. 737–750.
  11. Johnson M.E., Elliott S.J., Baek K-H., Garcia-Bonito J. An equivalent source technique for calculating the sound field inside an enclosure containing scattering objects // J. Acoust. Soc. Am. 1998. V. 104. № 3. P. 1221–1231.
  12. Mao J., Wang Z., Liu J., Song D. A Forward- Backward Splitting Equivalent Source Method Based on S- Difference // Appl. Sci. 2024. V. 14. № 3. P. 1086.1–1086.17.
  13. Gounot Y.J.R., Musafir R.E. Simulation of scattered fields: some guidelines for the equivalent source method // J. Sound. Vibr. 2011. V. 330. № 15. P. 3698–3709.
  14. Lee S. Review: the use of equivalent source method in computational acoustics // J. Comput. Acoustics. 2017. V. 25. № 1. 1630001.
  15. Fernandez-Grande E., Xenaki A., Gerstoft P. A sparse equivalent source method for near-field acoustic holography // J. Acoust. Soc. Am. 2017. V. 141. № 1. P. 532–542.
  16. He T., Mo S., Fang E., Wang M., Zhang R. Modeling three-dimensional underwater acoustic propagation over multi-layered fluid seabeds using the equivalent source method // J. Acoust. Soc. Am. 2021. V. 150. № 4. P. 2854–2864.
  17. Golub G.H., Van Loan C.F. Matrix computations. Baltimore: The John Hopkins University Press, 1989.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Positions of the EI (dots in the center) and receiving hydrophones (small cylinders).

Baixar (64KB)
3. Fig. 2. Top: B&K 8103 hydrophone used as a reference monopole. Bottom: source under calibration.

Baixar (158KB)
4. Fig. 3. The dots show the ratios of the CI and EM amplitudes for all 729 pairs at a frequency of 7 kHz. The histogram of the distribution of these ratios is shown in the upper left corner.

Baixar (55KB)
5. Fig. 4. Estimates of the ratio of the intensities of the CI and EM obtained using estimates of the ratio of the amplitudes of these sources (thick solid curve), (thin solid curve), (dashed line) and (dots).

Baixar (48KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024