Optimization of dissipative mufflers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The method of selecting the configuration of dissipative mufflers with the required acoustic efficiency is considered. The peculiarity of the considered approach is the use of an integral indicator of acoustic efficiency and dimensionless geometric parameters. The studies were carried out using finite element calculations. In the finite element model of a dissipative mufflers, acoustic characteristics of a fibrous sound-absorbing material obtained from experimental studies were used.

Texto integral

Acesso é fechado

Sobre autores

A. Komkin

Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: akomkin@mail.ru
Rússia, Moscow, 105005

A. Bykov

Bauman Moscow State Technical University

Email: akomkin@mail.ru
Rússia, Moscow, 105005

L. Karnaukhova

Bauman Moscow State Technical University

Email: akomkin@mail.ru
Rússia, Moscow, 105005

Bibliografia

  1. Старобинский Р.Н., Юдин Е.Я. Об одной модели распространения низкочастотного звука в облицованном канале // Акуст. журн. 1972. Т. 18. № 1. С. 115–119.
  2. Cummings A., Chang I.-J. Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent // J. Sound Vib. 1988. V. 127. № 1. P. 1–17.
  3. Peat K.S. A transfer matrix for an absorption silencer element // J. Sound Vib. 1991. V. 146. № 2. P. 353–360.
  4. Wang C.-N. Numerical decoupling analysis of resonator with absorbent material // Appl. Acoust. 1999. V. 58. № 1. С. 109−122.
  5. Glav R. The transfer matrix for a dissipative silencer of arbitrary cross-section // J. Sound Vib. 2000. V. 236. № 4. P. 575–594.
  6. Auredgan Y., Debray A., Starobinski R. Low frequency sound propagation in a coaxial cylindrical duct: application to sudden area expansions and to dissipative silencers // J. Sound Vib. 2001. V. 246. № 3. P. 461–473.
  7. Kirby R. Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow // J. Acoust. Soc. Am. 2003. V. 114. № 1. P. 200–209.
  8. Selamet A., Xu M.B., Lee I.-J., Huff N.T. Analytical approach for sound attenuation in perforated dissipative silencers // J. Acoust. Soc. Am. 2004. V. 115. № 5. Pt. 1. P. 2091–2099.
  9. Panigrahi S.N., Munjal M.L. Comparison of various methods for analyzing lined circular ducts // J. Sound Vib. 2005. V. 285. № 4–5. P. 905–923.
  10. Venegas К., Arenas J.P., Boutin C. Analytical modeling of dissipative silencers // J. Acoust. Soc. Am. 2018. V. 144. № 5. P. 2998–3009.
  11. Astley R.J., Cummings A. A finite element scheme for attenuation in ducts lined with porous material: comparison with experiment // J. Sound Vib. 1987. V. 116. № 2. P. 239–263.
  12. Bilawchuk S., Fyfe K.R. Comparison and implementation of the various numerical methods ёused for calculating transmission loss in silencer systems // Appl. Acoust. 2003. V. 64. № 9. P. 903–916.
  13. Kirby R. A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow // J. Sound Vib. 2009. V. 325. № 5. P. 565−582.
  14. Barbieri R., Barbieri N. Finite Element Acoustic Simulation Based Shape Optimization of a Muffler // Appl. Acoust. 2006. V. 67. № 4. P. 346–357.
  15. Комкин А.И. Оптимизация реактивных глушителей шума // Акуст. журн. 2010. Т. 56. № 3. С. 373–379.
  16. Воробьева Л.С., Комкин А.И. Расчет и проектирование диссипативных глушителей шума методом конечных элементов // Изв. вузов. Машиностроение. 2013. № 11. С. 58–63.
  17. Карнаухова Л.С., Комкин А.И. Интегральные показатели акустической эффективности диссипативных глушителей шума // Акустика среды обитания: cб. трудов I Всерос. конф. М., 2016. С. 80–87.
  18. Chiu M.C. Shape Optimization of One-chamber Perforated Mufflers Filled with Wool Using Simulated Annealing // J. Marine Science and Technology. 2013. V. 21. № 4. P. 380−390.
  19. Ferrandiza B., Denia F.D., Martinez-Casas J., Nadal E., Ródenas J.J. Topology and shape optimization of dissipative and hybrid mufflers // Structural and Multidisciplinary Optimization. 2020. V. 62. P. 269–284.
  20. Delany M.E., Bazley E.N. Acoustical properties of fibrous absorbent materials // Appl. Acoust. 1970. V. 1. № 3. P. 105–115.
  21. Ионов И.А., Комкин А.И. Эмпирические формулы для описания акустических характеристик звукопоглощающих материалов. Обзор // Акустика среды обитания: сб. трудов III Всерос. конф. М., 2018. С. 43−49.
  22. Комкин А.И., Львов В.А., Нестеров Н.С. Измерение сопротивления продуванию волокнистых звукопоглощающих материалов // Измерительная техника. 2017. № 7. С. 62–65.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Calculation model of a dissipative noise muffler.

Baixar (190KB)
3. Fig. 2. Transmission losses for the first (1) and second (2) muffler configurations as functions of (a) frequency and (b) dimensionless frequency.

Baixar (135KB)
4. Fig. 3. Dependences of transmission losses of prototype mufflers on (a) porosity and (b) diameter of perforation holes.

Baixar (170KB)
5. Fig. 4. Dependences of transmission losses of prototype mufflers on (a) fiber diameter and (b) SPM density.

Baixar (159KB)
6. Fig. 5. Dependences of generalized transmission losses on (a) the porosity coefficient and (b) the diameter of the muffler perforation holes for its relative dimensions: 1 − m = 16, n = 4; 2 − m = 9, n = 7; 3 – m = 4, n = 15.

Baixar (148KB)
7. Fig. 6. Dependences of generalized transmission losses on (a) density and (b) diameter of the ZPM fiber. (The designations are the same as in Fig. 5).

Baixar (149KB)
8. Fig. 7. Dependences of generalized transmission losses on the relative volume of the muffler for ZPM (a) — with ρ = 200 kg/m³, dв = 10 μm and (b) — with ρ = 150 kg/m³, dв = 30 μm at different degrees of expansion of the muffler.

Baixar (161KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024