Application of spectral proper orthogonal decomposition to the analysis of sound field of aeroacoustic sources

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Spectral proper orthogonal decomposition (SPOD) is proposed for the identification of the multipole structure of aeroacoustic noise sources from far-field measurements. The method is verified via tests with point multipoles and validated using experimental data on flow-induced cylinder noise and turbulent jet noise.

全文:

受限制的访问

作者简介

O. Bychkov

FAU TsAGI

Email: georgefalt@rambler.ru
俄罗斯联邦, Moscow

G. Faranosov

FAU TsAGI

编辑信件的主要联系方式.
Email: georgefalt@rambler.ru
俄罗斯联邦, Moscow

参考

  1. Curle N. The Influence of Solid Boundaries on Aerodynamic Sound // Proc. Roy. Soc. (London) Ser. A. 1955. V. 231. № 1187. P. 505–514.
  2. Kopiev V.F., Zaitsev M. Yu., Chernyshev S.A., Ostrikov N.N. Vortex ring input in subsonic jet noise // Int. J. Aeroacoust. 2007. V. 6. N. 4. P. 375–405.
  3. Myнин А.Г., Кузнецов И.М., Леонтьев E.A. Аэродинамические источники шума. М.: Машиностроение, 1981. С. 248.
  4. Rienstra S.W., Hirschberg A. An Introduction to Acoustics // Eindhoven University of Technology, 2004.
  5. Демьянов М.А. Корреляционный метод идентификации акустических источников с помощью многомикрофонных измерений // Акуст. журн. 2022. Т. 68. № 6. С. 638–646.
  6. Kopiev V.F., Chernyshev, S.A. Vortex ring eigen-oscillations as a source of sound // J. Fluid Mech. 1997. V. 341. P. 19–57.
  7. Зайцев М.Ю., Копьев В.Ф., Котова А.Н. Представление звукового поля турбулентного вихревого кольца суперпозицией квадруполей // Акуст. журн. 2001. Т. 47. № 6. С. 793–801.
  8. Блохинцев Д.И. Акустика неоднородной движущейся среды. М.: Наука, 1981.
  9. Зайцев М.Ю., Копьев В.Ф. Механизм генерации звука турбулентностью вблизи твердого тела // Изв. РАН МЖГ. 2008. № 1. С. 98–109.
  10. Баженова Л.А., Семенов А.Г. О влиянии числа Рейнольдса на интенсивность вихревого звука при обтекании цилиндрического профиля // Акуст. журн. 2013. Т. 59. № 5. С. 586–595.
  11. Kopiev V.F. Azimuthal decomposition of turbulent jet noise and its role for diagnostics of noise sources // VKI Lecture Series 2004–05. Advances in Aeroacoustics and Applications, 2004. P. 1–23.
  12. Бычков О.П., Зайцев М.Ю., Копьев В.Ф., Фараносов Г.А., Чернышев С.А. О двух подходах к моделированию шума низкоскоростных дозвуковых струй // Докл. Росс. Акад. наук. Физика, Техн. Науки. 2022. Т. 506. № 1. С. 16–25.
  13. Копьев В.Ф., Зайцев М.Ю., Копьев В.А., Остриков Н.Н., Фараносов Г.А. Использование акустических характеристик коронного разряда для диагностики его свойств // Акуст. журн. 2016. Т. 62. № 4. С. 424–430.
  14. Sergeev S., Lissek H., Howling A., Furno I., Plyushchev G., Leyland P. Development of a plasma electroacoustic actuator for active noise control applications // J. Physics D: Applied Physics. 2020. V. 53. N. 49. P. 495202.
  15. Скучик Е. Основы акустики. Т. 2. М.: Мир, 1976. С. 544.
  16. Бобровницкий Ю.И. Физическая модель и характеристики ближнего поля мультиполя // Акуст. журн. 1998. Т. 44. № 1. C. 11–20.
  17. Остриков Н.Н. Излучение звука распределенными квадрупольными источниками вблизи твердых тел // Акуст. журн. 2012. Т. 58. № 4. C. 525–534.
  18. Faranosov G., Belyaev I., Kopiev V., Bychkov O. Azimuthal structure of low-frequency noise of installed jet // AIAA Journal. 2019. V.57. N. 5. P. 1885–1898.
  19. Бычков О.П., Фараносов Г.А. Исследование влияния угла установки крыла на характеристики рассеяния ближнего гидродинамического поля турбулентной струи // Докл. Росс. Акад. наук. Физика, Техн. науки. 2022. Т. 506. № 1. С. 57–67.
  20. Kopiev V., Chernyshev S. Correlation model of quadrupole noise sources in turbulent jet: effect of refraction // AIAA paper. 2015. 2015–3130.
  21. Goldstein M.E. The low frequency sound from multipole sources in axisymmetric shear flows, with applications to jet noise // J. Fluid Mech. 1975. V. 70. No 3. P. 595–604.
  22. Kopiev V.F., Zaitsev M. Yu., Chernyshev S.A., Kotova A.N. The role of large-scale vortex in a turbulent jet noise // AIAA paper. 1999. 99–1839.
  23. Mani R. The influence of jet flow on jet noise. Part 1. The noise of unheated jets // J. Fluid Mech. 1976. V. 73. No 4. P. 753–778.
  24. Kopiev V., Chernyshev S.A., Faranosov G. On defining the jet noise source quadrupole structure on the basis of multi-array acoustic data and correlation theory // AIAA paper. 2016. 2016–2806.
  25. Cavalieri A.V., Jordan P., Colonius T., Gervais Y. Axisymmetric superdirectivity in subsonic jets // J. Fluid Mech. 2012. V. 704. P. 388–420.
  26. Suzuki T. Identification of multipole noise sources in low Mach number jets near the peak frequency // J. Acoust. Soc. Am.. 2006. V. 119. No 6. P. 3649–3659.
  27. Копьев В.Ф., Фараносов Г.А. Обобщение метода азимутальной декомпозиции звукового поля компактного источника на случай измерений вблизи жесткой поверхности // Акуст. журн. 2015. Т. 61. № 1. С. 65–75.
  28. Faranosov G., Belyaev I., Kopiev V., Zaytsev M., Aleksentsev A., Bersenev Y., Chursin V., Viskova T. Adaptation of the azimuthal decomposition technique to jet noise measurements in full-scale tests // AIAA Journal. 2017. V. 55. No 2. P. 572–584.
  29. Armstrong R.R., Michalke A., Fuchs H.V. Coherent structures in jet turbulence and noise // AIAA Journal. 1977. V. 15. No 7. P. 1011–1017.
  30. Juve D., Sunyach M., Comte-Bellot G. Filtered azimuthal correlations in the acoustic far field of a subsonic jet // AIAA Journal. 1979. V. 17. No 1. P. 112–114.
  31. Jordan P., Fitzpatrick J., Valiere J.-Ch. Measurement of an aeroacoustic dipole using a linear microphone array // J. Acoust. Soc. Am. 2002. V. 111. № 3. P. 1267–1273.
  32. Liu Y., Quayle A., Dowling A., Sijtsma P. Beamforming correction for dipole measurement using two-dimensional microphone arrays // J. Acoust. Soc. Am. 2008. V. 124. No 1. P. 182–191.
  33. Бычков О.П., Демьянов М.А., Фараносов Г.А. Локализация дипольных источников шума плоскими микрофонными решетками // Акуст. журн. 2019. Т. 65. № 5. С. 675–687.
  34. Taira K., Brunton S.L., Dawson S., Rowley C.W., Colonius T., McKeon B.J., Schmidt O.T., Gordeyev S., Theofilis V., Ukeiley L.S. Modal Analysis of Fluid Flows: An Overview // AIAA Journal. 2017. V. 55. No 12. P. 4013–4041.
  35. Towne A., Schmidt O.T., Colonius T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis // J. Fluid Mechanics. 2018. V. 847. P. 821–867.
  36. Lumley J.L. The Structure of Inhomogeneous Turbulent Flows // Atmospheric Turbulence and Radio Propagation, edited by Yaglom A.M., and Tatarski V.I., Nauka, Moscow, 1967, pp. 166–178.
  37. Pearson K. On lines and planes of closest fit to systems of points in space // The London, Edinburgh, and Dublin philosophical magazine and journal of science. 1901. V. 2. No 11. P. 559–572.
  38. Nekkanti A., Schmidt O.T. Modal analysis of acoustic directivity in turbulent jets // AIAA Journal. 2021. V. 59. No 1. P. 228–239.
  39. Fiore M., Parisot-Dupuis H., Etchebarne B., Gojon R. Spectral proper orthogonal decomposition of coupled hydrodynamic and acoustic fields: Application to impinging jet configurations // Computers & Fluids. 2022. V. 241. P. 105484.
  40. Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979.
  41. Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms // IEEE Trans. Audio and Electroacoustics. 1967. V. 15. N. 2. P. 70–73.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Model sources from uncorrelated dipoles (l = 1) or quadrupoles (l = 2).

下载 (98KB)
3. Fig. 2. Radiation directions of the original dipole sources (lines) and SPOD modes (markers): 1 – axisymmetric dipole (n = 0); 2 – transverse dipole (n = 1); 3 – total noise. ○ – SPOD mode j = 1; ◊ – SPOD mode j = 2; □ – total intensity of SPOD modes. (a) – = 2, = 1, N = 10; (b) – = 1, = 2, N = 10; (c) – = 1, = 1, N = 10; (d) – = 1, = 1, N = 20.

下载 (262KB)
4. Fig. 3. Radiation directions of the original quadrupole sources (lines) and SPOD modes (markers) for (a) – N = 10 and (b) – N = 30; 1 – axisymmetric quadrupole (n = 0); 2 – quadrupole (n = 1); 3 – quadrupole (n = 2); 4 – total noise. ○ – SPOD mode j = 1; ◊ – SPOD mode j = 2; Δ – SPOD mode j = 3; □ – total intensity of SPOD modes.

下载 (178KB)
5. Fig. 4. Experimental scheme. The arrows show the orientations of the dipole moments of the flow noise around the cylinder: the lift dipole (L) and the drag dipole (D).

下载 (74KB)
6. Fig. 5. Measured noise spectra: (a) – θ=30; (b) – θ=90; ​​(c) – θ=150. 1 – cylinder in a jet; 2 – jet without a cylinder.

下载 (124KB)
7. Fig. 6. Spectra of eigenvalues ​​of the SPOD decomposition of the sound field in the presence of a cylinder in the jet.

下载 (102KB)
8. Fig. 7. Radiation directivities in frequency bands for a cylinder in a jet: (a) – St = 0.017; (b) – 0.08; (c) – 0.14; (d) – 0.2. Solid line – measurements; ○ – SPOD mode j = 1; ◊ – SPOD mode j = 2; □ – total intensity of SPOD modes.

下载 (235KB)
9. Fig. 8. Spectral densities of the radiation intensity of individual SPOD modes (1-9), calculated using formula (20), and spectral densities of the radiation of the transverse (10) and longitudinal (11) dipoles, determined using the azimuthal decomposition method [33] (data are reduced to a distance of 1 m from the source).

下载 (121KB)
10. Fig. 9. (a) – Spectra of eigenvalues ​​of the SPOD expansion of the sound field of a free jet; (b) – radiation directions of the dominant SPOD modes for Stj = 0.1; curve designations are as in Fig. 3.

下载 (143KB)

版权所有 © The Russian Academy of Sciences, 2024