Post-selection design of aptamers: comparative study of the DNA aptamers affinity to the recombinant extracellular domain of human epidermal growth factor receptors
- 作者: Moiseenko V.L.1,2, Antipova O.M.1,3, Rybina A.A.1, Mukhametova L.I.1, Eremin S.A.1, Pavlova G.V.2,3, Kopylov A.M.1,2
-
隶属关系:
- Lomonosov Moscow State University
- Burdenko National Medical Research Institute for Neurosurgery
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
- 期: 卷 89, 编号 12 (2024)
- 页面: 2058-2069
- 栏目: Articles
- URL: https://gynecology.orscience.ru/0320-9725/article/view/677481
- DOI: https://doi.org/10.31857/S0320972524120032
- EDN: https://elibrary.ru/IFWHNZ
- ID: 677481
如何引用文章
详细
The current work provides a comparative assessment of the designed DNA aptamers affinity for the extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. The diversity of aptamer selection methods and techniques requires the unification of comparison algorithms, which is also necessary for designing aptamers used in post-selection fitting to the target protein EGFR*. In this study the affinity of DNA aptamers from two families – U31 and U2, previously obtained by Wu et al. from the same selection [Wu et al. (2014) PLoS One, 9, e90752] and their derivatives – GR20, U2s and Gol1, obtained by us through rational development, was compared. The aptamer affinity for EGFR* was measured by two different methods: a solution-phase technique – fluorescence polarization of FAM-labeled aptamers, and by a kinetic method using biolayer interferometry technique with aptamers immobilized on the surface. Unlike the values of equilibrium dissociation constants obtained through titration and expressed in units of protein concentration, the analysis of the titration profiles themselves and the kinetics of interaction proved to be more informative. This allowed us to identify how even subtle changes in the aptamers and their structures affect the affinity. Hypotheses regarding the “structure–function” relationships and recognition mechanisms were formulated. The data obtained for the set of aptamer constructions are critical for moving forward to examination of aptamer interactions with EGFR on the cell surface.
全文:

作者简介
V. Moiseenko
Lomonosov Moscow State University; Burdenko National Medical Research Institute for Neurosurgery
编辑信件的主要联系方式.
Email: valerian.moiseenko@gmail.com
俄罗斯联邦, 119991 Moscow; 125047 Moscow
O. Antipova
Lomonosov Moscow State University; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: valerian.moiseenko@gmail.com
俄罗斯联邦, 119991 Moscow; 117485 Moscow
A. Rybina
Lomonosov Moscow State University
Email: valerian.moiseenko@gmail.com
俄罗斯联邦, 119991 Moscow
L. Mukhametova
Lomonosov Moscow State University
Email: valerian.moiseenko@gmail.com
俄罗斯联邦, 119991 Moscow
S. Eremin
Lomonosov Moscow State University
Email: valerian.moiseenko@gmail.com
俄罗斯联邦, 119991 Moscow
G. Pavlova
Burdenko National Medical Research Institute for Neurosurgery; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Email: valerian.moiseenko@gmail.com
俄罗斯联邦, 125047 Moscow; 117485 Moscow
A. Kopylov
Lomonosov Moscow State University; Burdenko National Medical Research Institute for Neurosurgery
Email: valerian.moiseenko@gmail.com
俄罗斯联邦, 119991 Moscow; 125047 Moscow
参考
- Di Mauro, V., Lauta, F.C., Modica, J., Appleton, S. L., De Franciscis, V., and Catalucci, D. (2023) Diagnostic and therapeutic aptamers: a promising pathway to improved cardiovascular disease management, JACC Basic Transl. Sci., 9, 260-277, https://doi.org/10.1016/j.jacbts.2023.06.013.
- Kejamurthy, P., and Devi, K. T. R. (2023) Immune checkpoint inhibitors and cancer immunotherapy by aptamers: an overview, Med. Oncol., 41, 40, https://doi.org/10.1007/s12032-023-02267-4.
- Lin, B., Xiao, F., Jiang, J., Zhao, Z., and Zhou, X. (2023) Engineered aptamers for molecular imaging, Chem. Sci., 14, 14039-14061, https://doi.org/10.1039/d3sc03989g.
- Murray, M. T., and Wetmore, S. D. (2024) Unlocking precision in aptamer engineering: a case study of the thrombin binding aptamer illustrates why modification size, quantity, and position matter, Nucleic Acids Res., 52, 10823-10835, https://doi.org/10.1093/nar/gkae729.
- Plach, M., and Schubert, T. (2020) Biophysical characterization of aptamer-target interactions, Adv. Biochem. Eng. Biotechnol., 174, 1-15, https://doi.org/10.1007/10_2019_103.
- An, Z., Aksoy, O., Zheng, T., Fan, Q. W., and Weiss, W. A. (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies, Oncogene, 37, 1561-1575, https://doi.org/10.1038/s41388-017-0045-7.
- Sabbah, D. A., Hajjo, R., and Sweidan, K. (2020) Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors, Curr. Top. Med. Chem., 20, 815-834, https://doi.org/10.2174/1568026620666200303123102.
- Li, N., Larson, T., Nguyen, H. H., Sokolov, K. V., and Ellington, A. D. (2010) Directed evolution of gold nanoparticle delivery to cells, Chem. Commun. (Camb), 46, 392-394, https://doi.org/10.1039/b920865h.
- Li, N., Nguyen, H. H., Byrom, M., and Ellington, A. D. (2011) Inhibition of cell proliferation by an anti-EGFR aptamer, PLoS One, 6, e20299, https://doi.org/10.1371/journal.pone.0020299.
- Cruz Da Silva, E., Foppolo, S., Lhermitte, B., Ingremeau, M., Justiniano, H., Klein, L., Chenard, M. P., Vauchelles, R., Abdallah, B., Lehmann, M., Etienne-Selloum, N., Dontenwill, M., and Choulier, L. (2022) Bioimaging nucleic-acid aptamers with different specificities in human glioblastoma tissues highlights tumoral heterogeneity, Pharmaceutics, 14, 1980, https://doi.org/10.3390/pharmaceutics14101980.
- Avutu, V. (2010) Avidity effects of MinE07, an anti-EGFR aptamer, on binding to A431 cells, The University of Texas at Austin Texas ScholarWorks, URL: https://repositories.lib.utexas.edu/items/fbdce8b0-71cf-4422-a5c2-16c7e5695544.
- Cheng, S., Jacobson, O., Zhu, G., Chen, Z., Liang, S. H., Tian, R., Yang, Z., Niu, G., Zhu, X., and Chen, X. (2019) PET imaging of EGFR expression using an 18F-labeled RNA aptamer, Eur. J. Nucl. Med. Mol. Imaging, 46, 948-956, https://doi.org/10.1007/s00259-018-4105-1.
- Paul, A. R., Falsaperna, M., Lavender, H., Garrett, M. D., and Serpell, C. J. (2023) Selection of optimised ligands by fluorescence-activated bead sorting, Chem. Sci., 14, 9517-9525, https://doi.org/10.1039/d3sc03581f.
- Esposito, C. L., Passaro, D., Longobardo, I., Condorelli, G., Marotta, P., Affuso, A., de Franciscis, V., and Cerchia, L. (2011) A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death, PLoS One, 6, e24071, https://doi.org/10.1371/journal.pone.0024071.
- Wang, D. L., Song, Y. L., Zhu, Z., Li, X. L., Zou, Y., Yang, H. T., Wang, J. J., Yao, P. S., Pan, R. J., Yang, C. J., and Kang, D. Z. (2014) Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity, Biochem. Biophys. Res. Commun., 453, 681-685, https://doi.org/10.1016/j.bbrc.2014.09.023.
- Wu, X., Liang, H., Tan, Y., Yuan, C., Li, S., Li, X., Li, G., Shi, Y., and Zhang, X. (2014) Cell-SELEX aptamer for highly specific radionuclide molecular imaging of glioblastoma in vivo, PLoS One, 9, e90752, https://doi.org/10.1371/journal.pone.0090752.
- Zavyalova, E., Turashev, A., Novoseltseva, A., Legatova, V., Antipova, O., Savchenko, E., Balk, S., Golovin, A., Pavlova, G., and Kopylov, A. (2020) Pyrene-modified DNA aptamers with high affinity to wild-type EGFR and EGFRvIII, Nucleic Acid Ther., 30, 175-187, https://doi.org/10.1089/nat.2019.0830.
- Kim, K., Lee, S., Ryu, S., and Han, D. (2014) Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay, Biochem. Biophys. Res. Commun., 448, 114-119, https://doi.org/10.1016/ j.bbrc.2014.04.086.
- Damase, T. R., Miura, T. A., Parent, C. E., and Allen, P. B. (2018) Application of the open qPCR instrument for the in vitro selection of DNA aptamers against epidermal growth factor receptor and Drosophila C virus, ACS Comb. Sci., 20, 45-54, https://doi.org/10.1021/acscombsci.7b00138.
- Damase, T. R., and Allen, P. B. (2019). Idiosyncrasies of thermofluorimetric aptamer binding assays, BioTechniques, 66, 121-127, https://doi.org/10.2144/btn-2018-0128.
- Il’in, V. A., Pyzhik, E. V., Balakhonov, A. B., Kiryushin, M. A., Shcherbatova, E. V., Kuznetsov, A. A., Kostin, P. A., Golovin, A. V., Korshun, V. A., Brylev, V. A., Sapozhnikova, K. A., Kopylov, A. M., Pavlova, G. V., and Pronin, I. N. (2022) Radiochemical synthesis of 4-[18F]FluorobenzylAzide and its conjugation with EGFR-specific aptamers, Molecules, 28, 294, https://doi.org/10.3390/molecules28010294.
- Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure, Proc. Natl. Acad. Sci. USA, 101, 7287-7292, https://doi.org/10.1073/pnas.0401799101.
- Reuter, J. S., and Mathews, D. H. (2010) RNAstructure: software for RNA secondary structure prediction and analysis, BMC Bioinformatics, 11, 129, https://doi.org/10.1186/1471-2105-11-129.
- SantaLucia J., Jr. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, Proc. Natl Acad. Sci. USA, 95, 1460-1465, https://doi.org/10.1073/pnas.95.4.1460.
- SantaLucia, J., Jr., and Hicks, D. (2004) The thermodynamics of DNA structural motifs, Annu. Rev. Biophys. Biomol. Struct., 33, 415-440, https://doi.org/10.1146/annurev.biophys.32.110601.141800.
- Hirka, S., and McKeague, M. (2021) Quantification of aptamer-protein binding with fluorescence anisotropy, Aptamers, 5, 1-6, https://doi.org/10.13140/RG.2.2.13355.57124.
- Weaver, S. D., and Whelan, R. J. (2021) Characterization of DNA aptamer-protein binding using fluorescence anisotropy assays in low-volume, high-efficiency plates, Anal. Methods, 13, 1302-1307, https://doi.org/10.1039/d0ay02256j.
- O’Shannessy, D. J., Brigham-Burke, M., Soneson, K. K., Hensley, P., and Brooks, I. (1993) Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods, Anal. Biochem., 212, 457-468, https://doi.org/10.1006/abio.1993.1355.
- Cao, Z., and Tan, W. (2005) Molecular aptamers for real-time protein-protein interaction study, Chemistry, 11, 4502-4508, https://doi.org/10.1002/chem.200400983.
- Ferré-D’Amaré, A. R., and Doudna, J. A. (1999) RNA folds: insights from recent crystal structures, Annu. Rev. Biophys. Biomol. Struct., 28, 57-73, https://doi.org/10.1146/annurev.biophys.28.1.57.
- Sarkar, R., Mainan, A., and Roy, S. (2024) Influence of ion and hydration atmospheres on RNA structure and dynamics: insights from advanced theoretical and computational methods, Chem. Commun. (Camb), 60, 3624-3644, https://doi.org/10.1039/d3cc06105a.
- Zhao, Q., Tao, J., Feng, W., Uppal, J. S., Peng, H., and Le, X. C. (2020) Aptamer binding assays and molecular interaction studies using fluorescence anisotropy – a review, Anal. Chim. Acta, 1125, 267-278, https://doi.org/10.1016/ j.aca.2020.05.061.
- Jha, R., Gorai, P., Shrivastav, A., and Pathak, A. (2024) Label-free biochemical sensing using processed optical fiber interferometry: a review, ACS Omega, 9, 3037-3069, https://doi.org/10.1021/acsomega.3c03970.
补充文件
