The selection of optimal pegRNAs to enhance the efficiency of prime editing in AT-rich genome regions

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Prime editing is a highly promising strategy for treating hereditary disorders due to its superior efficiency and safety profile compared to conventional CRISPR-Cas9 systems. This study is dedicated to development of a causal therapy for cystic fibrosis by targeting the F508del variant in the CFTR gene using prime editing, as this specific deletion accounts for a substantial proportion of cystic fibrosis cases. While prime editing has shown remarkable precision in introducing targeted genetic modifications, its application in AT-rich genomic regions, such as the one containing the F508del variant, remains challenging. To overcome this limitation, we systematically evaluated 24 pegRNAs designed for two distinct prime editing systems, PEmax and PE2-NG. The correction efficiency of the F508del variant reached 2.81% in basal lung cells from homozygous F508del patients, without normalization for transfection efficiency. However, the average transfection efficiency was only 11.9%, emphasizing the critical need for advancements in delivery methodologies. These findings highlight the potential of prime editing as a therapeutic approach for cystic fibrosis, while also underscoring the necessity for further optimization of both editing constructs and delivery vectors to achieve clinically relevant correction levels.

Full Text

Restricted Access

About the authors

O. V. Volodina

Research Centre for Medical Genetics

Author for correspondence.
Email: volodold@gmail.com
Russian Federation, 115522 Moscow

A. G. Demchenko

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

A. A. Anuchina

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

O. P. Ryzhkova

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

V. A. Kovalskaya

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

E. V. Kondrateva

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

V. Y. Tabakov

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

A. V. Lavrov

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

S. A. Smirnikhina

Research Centre for Medical Genetics

Email: volodold@gmail.com
Russian Federation, 115522 Moscow

References

  1. Xiao-Jie, L., Hui-Ying, X., Zun-Ping, K., Jin-Lian, C., and Li-Juan, J. (2015) CRISPR-Cas9: a new and promising player in gene therapy, J. Med. Genet., 52, 289-296, https://doi.org/10.1136/jmedgenet-2014-102968.
  2. Gaj, T., Gersbach, C. A., and Barbas, C. F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 31, 397-405, https://doi.org/10.1016/j.tibtech.2013.04.004.
  3. Tröder, S. E., and Zevnik, B. (2022) History of genome editing: from meganucleases to CRISPR, Lab. Anim., 56, 60-68, https://doi.org/10.1177/0023677221994613.
  4. Uddin, F., Rudin, C. M., and Sen, T. (2020) CRISPR gene therapy: applications, limitations, and implications for the future, Front. Oncol., 10, 1387, https://doi.org/10.3389/fonc.2020.01387.
  5. Kantor, A., McClements, M. E., and MacLaren, R. E. (2020) CRISPR-Cas9 DNA base-editing and prime-editing, Int. J. Mol. Sci., 21, 6240, https://doi.org/10.3390/ijms21176240.
  6. Lee, J., Lim, K., Kim, A., Mok, Y. G., Chung, E., Cho, S.-I., Lee, J. M., and Kim, J.-S. (2023) Prime editing with genuine Cas9 nickases minimizes unwanted indels, Nat. Commun., 14, 1786, https://doi.org/10.1038/s41467-023-37507-8.
  7. Chow, R. D., Chen, J. S., Shen, J., and Chen, S. (2021) A web tool for the design of prime-editing guide RNAs, Nat. Biomed. Eng., 5, 190-194, https://doi.org/10.1038/s41551-020-00622-8.
  8. Hwang, G.-H., Jeong, Y. K., Habib, O., Hong, S.-A., Lim, K., Kim, J.-S., and Bae, S (2021) PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing, Nucleic Acids Res., 49, W499-W504, https://doi.org/10.1093/nar/gkab319.
  9. Nelson, J. W., Randolph, P. B., Shen, S. P., Everette, K. A., Chen, P. J., Anzalone, A. V., An, M., Newby, G. A., Chen, J. C., Hsu, A., and Liu, D. R. (2022) Engineered pegRNAs improve prime editing efficiency, Nat. Biotechnol., 40, 402-410, https://doi.org/10.1038/s41587-021-01039-7.
  10. Kiseleva, A., Klimushina, M., Sotnikova, E., Skirko, O., Divashuk, M., Kurilova, O., Ershova, A., Khlebus, E., Zharikova, A., Efimova, I., Pokrovskaya, M., Slominsky, P. A., Shalnova, S., Meshkov, A., and Drapkina, O. (2020) Cystic fibrosis polymorphic variants in a Russian population, Pharmgenomics Pers. Med., 13, 679-686, https://doi.org/10.2147/PGPM.S278806.
  11. Scotet, V., L’Hostis, C., and Férec, C. (2020) The changing epidemiology of cystic fibrosis: incidence, survival and impact of the CFTR gene discovery, Genes (Basel), 11, 589, https://doi.org/10.3390/genes11060589.
  12. Bobadilla, J. L., Macek, M., Fine, J. P., and Farrell, P. M. (2002) Cystic fibrosis: a worldwide analysis of CFTR mutations – correlation with incidence data and application to screening, Hum. Mutat., 19, 575-606, https://doi.org/10.1002/humu.10041.
  13. Регистр больных муковисцидозом в России, URL: https://mukoviscidoz.org/mukovistsidoz-v-rossii.html.
  14. De Boeck, K. (2020) Cystic fibrosis in the year 2020: a disease with a new face, Acta Paediatr., 109, 893-899, https://doi.org/10.1111/apa.15155.
  15. McKone, E. F., Ariti, C., Jackson, A., Zolin, A., Carr, S. B., Orenti, A., van Rens, J. G., Lemonnier, L., Macek, M., Keogh, R. H., Naehrlich, L., and European Cystic Fibrosis Society Patient Registry (2021) Survival estimates in European cystic fibrosis patients and the impact of socioeconomic factors: a retrospective registry cohort study, Eur. Respir. J., 58, 2002288, https://doi.org/10.1183/13993003.02288-2020.
  16. Амелина Е. Л., Черняк А. В., Черняев А. Л. (2001) Муковисцидоз: определение продолжительности жизни, Пульмонология, 61-64.
  17. Spoletini, G., Gillgrass, L., Pollard, K., Shaw, N., Williams, E., Etherington, C., Clifton, I. J., and Peckham, D. G. (2022) Dose adjustments of Elexacaftor/Tezacaftor/Ivacaftor in response to mental health side effects in adults with cystic fibrosis, J. Cyst. Fibros., 21, 1061-1065, https://doi.org/10.1016/j.jcf.2022.05.001.
  18. Papadakis, L., Stander, T., Mombourquette, J., Richards, C. J., Yonker, L. M., Lawton, B., Hardcastle, M., Zweifach, J., Sicilian, L., Bringhurst, L., and Neuringer, I. P. (2025) Heterogeneity in reported side effects following initiation of elexacaftor-tezacaftor-ivacaftor: experiences at a quaternary CF care center, Pediatr. Pulmonol., 60, e27382, https://doi.org/10.1002/ppul.27382.
  19. Safety and Possible Side Effects|TRIKAFTA® (elexacaftor/tezacaftor/ivacaftor and ivacaftor), URL: https:// www.trikafta.com/safety-side-effects.
  20. Kondrateva, E., Adilgereeva, E., Amelina, E., Tabakov, V., Demchenko, A., Ustinov, K., Yasinovsky, M., Voronina, E., Lavrov, A., and Smirnikhina, S. (2020) Generation of induced pluripotent stem cell line (RCMGi001-A) from human skin fibroblasts of a cystic fibrosis patient with p.F508del mutation, Stem Cell Res., 48, 101933, https://doi.org/10.1016/j.scr.2020.101933.
  21. Kondrateva, E., Demchenko, A., Slesarenko, Y., Yasinovsky, M., Amelina, E., Tabakov, V., Voronina, E., Lavrov, A., and Smirnikhina, S. (2021) Derivation of iPSC line (RCMGi002-A) from dermal fibroblasts of a cystic fibrosis female patient with homozygous F508del mutation, Stem Cell Res., 53, 102251, https://doi.org/10.1016/ j.scr.2021.102251.
  22. Demchenko, A., Belova, L., Balyasin, M., Kochergin-Nikitsky, K., Kondrateva, E., Voronina, E., Pozhitnova, V., Tabakov, V., Salikhova, D., Bukharova, T., Goldshtein, D., Kondratyeva, E., Kyian, T., Amelina, E., Zubkova, O., Popova, O., Ozharovskaia, T., Lavrov, A., and Smirnikhina, S. (2024) Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research, Front. Cell. Dev. Biol., 12, 1336392, https://doi.org/10.3389/fcell.2024.1336392.
  23. Chen, P. J., Hussmann, J. A., Yan, J., Knipping, F., Ravisankar, P., Chen, P.-F., Chen, C., Nelson, J. W., Newby, G. A., Sahin, M., Osborn, M. J., Weissman, J. S., Adamson, B., and Liu, D. R. (2021) Enhanced prime editing systems by manipulating cellular determinants of editing outcomes, Cell, 184, 5635-5652.e29, https://doi.org/10.1016/ j.cell.2021.09.018.
  24. Kweon, J., Yoon, J.-K., Jang, A.-H., Shin, H. R., See, J.-E., Jang, G., Kim, J.-I., and Kim, Y. (2021) Engineered prime editors with PAM flexibility, Mol. Ther., 29, 2001-2007, https://doi.org/10.1016/j.ymthe.2021.02.022.
  25. Clement, K., Rees, H., Canver, M. C., Gehrke, J. M., Farouni, R., Hsu, J. Y., Cole, M. A., Liu, D. R., Joung, J. K., Bauer, D. E., and Pinello, L. (2019) CRISPResso2 provides accurate and rapid genome editing sequence analysis, Nat. Biotechnol., 37, 224-226, https://doi.org/10.1038/s41587-019-0032-3.
  26. Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., and Liu, D. R. (2019) Search-and-replace genome editing without double-strand breaks or donor DNA, Nature, 576, 149-157, https://doi.org/10.1038/s41586-019-1711-4.
  27. Kim, D. Y., Moon, S. B., Ko, J.-H., Kim, Y.-S., and Kim, D. (2020) Unbiased investigation of specificities of prime editing systems in human cells, Nucleic Acids Res., 48, 10576-10589, https://doi.org/10.1093/nar/gkaa764.
  28. Fajrial, A. K., He, Q. Q., Wirusanti, N. I., Slansky, J. E., and Ding, X. (2020) A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing, Theranostics, 10, 5532-5549, https://doi.org/10.7150/thno.43465.
  29. Johnson, L. G., Olsen, J. C., Sarkadi, B., Moore, K. L., Swanstrom, R., and Boucher, R. C. (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis, Nat. Genet., 2, 21-25, https://doi.org/10.1038/ng0992-21.
  30. Ribeiro, S., Mairhofer, J., Madeira, C., Diogo, M. M., Lobato da Silva, C., Monteiro, G., Grabherr, R., and Cabral, J. M. (2012) Plasmid DNA size does affect nonviral gene delivery efficiency in stem cells, Cell Reprogram., 14, 130-137, https://doi.org/10.1089/cell.2011.0093.
  31. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl. Acad. Sci. USA, 84, 7413-7417.
  32. Bulcaen, M., Kortleven, P., Liu, R. B., Maule, G., Dreano, E., Kelly, M., Ensinck, M. M., Thierie, S., Smits, M., Ciciani, M., Hatton, A., Chevalier, B., Ramalho, A. S., Casadevall I Solvas, X., Debyser, Z., Vermeulen, F., Gijsbers, R., Sermet-Gaudelus, I., Cereseto, A., and Carlon, M. S. (2024) Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells, Cell Rep. Med., 5, 101544, https://doi.org/10.1016/j.xcrm.2024.101544.
  33. Li, C., Liu, Z., Anderson, J., Liu, Z., Tang, L., Li, Y., Peng, N., Chen, J., Liu, X., Fu, L., Townes, T. M., Rowe, S. M., Bedwell, D. M., Guimbellot, J., and Zhao, R. (2023) Prime editing-mediated correction of the CFTR W1282X mutation in iPSCs and derived airway epithelial cells, PLoS One, 18, e0295009, https://doi.org/10.1371/journal.pone.0295009.
  34. Sousa, A. A., Hemez, C., Lei, L., Traore, S., Kulhankova, K., Newby, G. A., Doman, J. L., Oye, K., Pandey, S., Karp, P. H., McCray, P. B., and Liu, D. R. (2025) Systematic optimization of prime editing for the efficient functional correction of CFTR F508del in human airway epithelial cells, Nat. Biomed. Eng., 9, 7-21, https://doi.org/ 10.1038/s41551-024-01233-3.
  35. Averina, O. A., Permyakov, O. A., Grigorieva, O. O., Starshin, A. S., Mazur, A. M., Prokhortchouk, E. B., Dontsova, O. A., and Sergiev, P. V. (2021) Comparative analysis of genome editors efficiency on a model of mice zygotes microinjection, Int. J. Mol. Sci., 22, 10221, https://doi.org/10.3390/ijms221910221.
  36. Bassai, L., Shigunov, P., and Soares, L. (2021) Correction of the mutation cause of cystic fibrosis (F508DEL) in pulmonary epithelius line cells BY CRISPR/CAS9, Cytotherapy, 23, 8, https://doi.org/10.1016/j.jcyt.2021.02.028.
  37. Smirnikhina, S. A., Kondrateva, E. V., Adilgereeva, E. P., Anuchina, A. A., Zaynitdinova, M. I., Slesarenko, Y. S., Ershova, A. S., Ustinov, K. D., Yasinovsky, M. I., Amelina, E. L., Voronina, E. S., Yakushina, V. D., Tabakov, V. Y., and Lavrov, A. V. (2020) P.F508del editing in cells from cystic fibrosis patients, PLoS One, 15, e0242094, https://doi.org/10.1371/journal.pone.0242094.
  38. Graham, C., and Hart, S. (2021) CRISPR/Cas9 gene editing therapies for cystic fibrosis, Expert Opin. Biol. Ther., 21, 767-780, https://doi.org/10.1080/14712598.2021.1869208.
  39. Pfeiffer, F., Gröber, C., Blank, M., Händler, K., Beyer, M., Schultze, J. L., and Mayer, G. (2018) Systematic evaluation of error rates and causes in short samples in next-generation sequencing, Sci. Rep., 8, 10950, https://doi.org/10.1038/s41598-018-29325-6.
  40. Ma, X., Shao, Y., Tian, L., Flasch, D. A., Mulder, H. L., Edmonson, M. N., Liu, Y., Chen, X., Newman, S., Nakitandwe, J., Li, Y., Li, B., Shen, S., Wang, Z., Shurtleff, S., Robison, L. L., Levy, S., Easton, J., and Zhang, J. (2019) Analysis of error profiles in deep next-generation sequencing data, Genome Biol., 20, 50, https://doi.org/10.1186/ s13059-019-1659-6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Ribonucleic acid complex for primed editing, detailed description in text

Download (1MB)
3. Fig. 2. Scheme of assembly of plasmid construct with pegRNA

Download (1MB)
4. Fig. 3. Experimental design for screening 24 pegRNA for lung CF in two patients with homozygous F508del variant in the CFTR gene.

Download (987KB)
5. Fig. 4. Pathogenic variant correction efficiency after primed editing using 24 pegRNA in the lung BC of two patients with homozygous F508del variant in the CFTR gene. Genetic constructs were delivered by electroporation. The graph shows the average pathogenic variant correction efficiency in two experiments. Error bars on the Y axis represent the standard error of the mean; K is the untransfected control.

Download (636KB)
6. Fig. 5. Efficiency of pathogenic variant correction after primed editing using the 7 most effective pegRNAs in the lung BC of two patients with the homozygous F508del variant in the CFTR gene. The graph shows the average editing efficiency of each pegRNA. Pooled data are shown for two biological and three technical replicates on the lung BC of two patients. Statistical analysis was performed using Dunn's test. Error bars on the Y axis represent the standard error of the mean; K – untransfected cells; * p < 0.05; *** p < 0.001

Download (552KB)
7. Fig. 6. Evaluation of off-target DNA changes after primed editing in samples without a targeted CTT insert. The figure shows the analyzed DNA sequence (with the F508del variant), the corresponding amino acid sequence (the amino acid and its position in the polypeptide chain are indicated), and the location of the single-strand break introduced using pegRNA20, -21, and -22. A graph is also shown showing the distribution of single-nucleotide substitutions c.1528G>N, c.1529T>N, c.1531T>N, and c.1531delT introduced during editing using pegRNA20, -21, and -22. Error bars on the Y axis represent the standard error of the mean.

Download (862KB)
8. Fig. 7. Evaluation of off-target DNA changes after primed editing in samples with the targeted CTT insertion. The figure shows the analyzed DNA sequence (without the F508del variant), the corresponding amino acid sequence (the amino acid and its position in the polypeptide chain are indicated), and the sites of single-strand break introduction using different pegRNAs. a – Introduction of changes to the targeted insertion during editing using pegRNA1, -17, -19, and -20; error bars on the Y axis reflect the standard error of the mean. b – Distribution of single nucleotide substitutions c.1528G>A, c.1529T>S, and c.1531T>C introduced during editing using pegRNA20, -21, and -22; error bars on the Y axis reflect the standard error of the mean.

Download (845KB)

Copyright (c) 2025 Russian Academy of Sciences