Ignition of Self-Sustained Е×В Discharge; Ion Contribution to Understanding the Process

Cover Page

Cite item

Full Text

Abstract

We determined critical values for the ignition voltage and magnetic induction for a self-sustained plasma discharge in crossed electric and magnetic fields, both at inert gases and in their mixtures. As parameters that enabled to visualize igniting an E×B discharge, we used the ion current and the induction current derivative, and provided the temporal characteristics for the process. We found a double structure of the ion current (discharge current) during the ignition. The working media initial state for the discharge current first jump is a neutral gas, whereas the working media initial state for the second jump is plasma. A peak of ions originated within the near-cathode area is detected on the energy distributions of the ions obtained during the ignition. Also detected is a wide ion energy spectrum related to the discharge gap. We show a various discharge ignition character for Penning pairs, when the gas changes its role (main or admixture) in the mixture. The character is determined by features of forming the electric potential distribution in the near-cathode layer.

Full Text

Restricted Access

About the authors

N. A. Strokin

Irkutsk National Research Technical University

Author for correspondence.
Email: strokin85@inbox.ru
Russian Federation, Irkutsk

A. V. Rigin

Irkutsk National Research Technical University

Email: strokin85@inbox.ru
Russian Federation, Irkutsk

References

  1. Brown S.C. Introduction to electrical discharges in gases (John Wiley & Sons, New York, London, Sydney, 1966). Available at: http://experimentationlab.berkeley.edu/sites/default/files/ Electrical-Discharges-In-Gases.pdf)
  2. Raizer Y.P. Gas Discharge Physics (Springer, Berlin, 1991). Available at: https://link.springer.com/book/9783642647604
  3. Gallo C.F. // IEEE Trans. Ind. Appl. 1975. V. IA-13. P. 739. doi: 10.1109/TIA.1975.349370
  4. Baranov O., Bazaka K., Kersten H., Keidar M., Cvelbar U., Xu S., Levchenko I. // Appl. Phys. Rev. 2017. V. 4. Р. 041302. doi: 10.1063/1.5007869
  5. Liu W., Zhang G., Jin C., Xu Y., Nie Y., Shi X., Sun J., and Yang J. // Appl. Phys. Lett. 2022. V. 121. Р. 073301. doi: 10.1063/5.0092988
  6. Abolmasov S.N. // Plasma Sourc. Sci. Technol. 2012. V. 21. Р. 035006. doi: 10.1088/0963-0252/21/3/035006
  7. Michiels M., Leonova K., Godfroid T., Snyders R., and Britun N. // Appl. Phys. Lett. 2022. V. 121. Р. 051603. doi: 10.1063/5.0096128
  8. Goebel D.M. and Katz I. FundamenAALs of Electric Propulsion: Ion and Hall Thrusters (John Wiley & Sons, Hoboken, New Jersey, 2008). Available at: https://descanso.jpl.nasa.gov/SciTechBook/series1/Goebel_cmprsd_opt.pdf.
  9. Keidar M. // Plasma Sourc. Sci. Technol. 2015. V. 24. Р. 033001. doi: 10.1088/0963-0252/24/3/033001
  10. Keidar М. and Robert E. // Phys. Plasmas. 2015. V. 22. Р. 121901. doi: 10.1063/1.4933406
  11. Xu Z., Lan Y., Ma J., Shen J., Han W., Shuheng H.U., Chaobing Y.E., Wenhao X.I., Zhang Y., Yang C., Zhao X., Cheng C. // Plasma Sci. Technol. 2020. V. 22. Р. 103003. doi: 10.1088/2058-6272/ab9ddd
  12. Townsend J.S. // J. Sci., Ser. 6. 1913. V. 26. P. 730. doi: 10.1080/14786441308635017
  13. Townsend J.S., Gill E.W.B. // J. Sci. Ser. 7. 1938. V. 26. P. 290. doi: 10.1080/14786443808562125
  14. Blevin H.A., Haydon S.C. // Aust. J. Phys. 1958. V. 11. P. 18. doi: 10.1071/PH580018
  15. Valle G. // Nuovo Cimento. 1950. V. 7. P. 174. doi: 10.1007/BF02781871
  16. Heylen A.E.D., Eng C. // IEE Proc. 1980. V. 127. P. 221. doi: 10.1049/ip-a-1.1980.0034
  17. Nikulin S.P. // Tech. Phys. 1998. V. 43. P. 795. doi: 10.1134/1.1259092
  18. Ellison C.L., Raitses Y., Fisch N.J. // IEEE Trans. Plasma Sci. 2011. V. 39. P. 2950. doi: 10.1109/TPS.2011.2121925
  19. Penning F.M. // Naturwiss. 1927. V. 15. P. 818. doi: 10.1007/BF01505431
  20. Penning F.M. // Z. Phys. 1929. V. 57. P. 723. doi: 10.1007/BF01340651
  21. Penning F.M. // Physica. 1934. V. 1. P. 1028. doi: 10.1016/S0031-8914(34)80297-2
  22. Strokin N.A., Bardakov V.M. // Plasma Phys. Rep. 2019. V. 45. P. 46. doi: 10.1063/1.4846898
  23. Bardakov V.M., Ivanov S.D., Kazantsev A.V., Strokin N.A. // Rev. Sci. Instrum. 2015. V. 86. 053501. doi: 10.1063/1.4920998
  24. Bardakov V.M., Ivanov S.D., Kazantsev A.V., Strokin N.A. // Instrum. Exp. Tech. 2015. V. 58. No. 3. P. 359. doi: 10.1134/S0020441215030045
  25. Lai S.T. // AIP Adv. 2020. V. 10. Р. 095324. doi: 10.1063/5.0014266
  26. Ohayon B., Wahlin E., Ron G. // J. Instrum. 2015. V. 10. Р. 03009. doi: 10.1088/1748-0221/10/03/P03009

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) - Scheme of the UAS discharge gap; (b) - example of distribution of the radial component of the magnetic field induction along the discharge gap; d = 6 mm; D = 10 mm; H ≈ 14 mm - area of electron emission from the cathode surface

Download (155KB)
3. Fig. 2. Neon, infusion rate q = 120 sccm, Uig = 840 V, Big = 0.24 Tesla; curve 1 - signal from Rogowski belt; 2 - signal from ion sensor; time axis scale M = 250 μs/division

Download (158KB)
4. Fig. 3. Left branches of E×B-discharge ignition curves in UAS at Uig ≈ 840 V: (a) - 1 - Kr (q = 5 sccm), 2 - Ar (q = 10 sccm), 3 - Ne (q = 60 sccm), 4 - Ne (q = 50 sccm); (b) - 1 - Kr, 2 - Ar, 3 - Ne. Here and further in all figures the parameter q is expressed in units of sccm (standard cubic centimetres per minute at density determined by standard conditions for temperature and pressure)

Download (135KB)
5. Fig. 4. Left branches of ignition curves: 1 - Ne (q = 60 sccm) plus Kr, the rate of which was varied (q - var); 2 - Ne (q = 60 sccm) + Ar (q - var); Uig ≈ 825 V

Download (54KB)
6. Fig. 5. (a) - set of left branches of ignition curves for mixtures of argon, krypton and neon: curve 1 - Kr (q = 3 sccm) + Ne (q = 30 sccm); 2 - Ar (q = 5 sccm) + Ne (q = 30 sccm); 3 - Kr (q = 3 sccm) + Ar (q = 3 sccm) + Ne (q = 40 sccm); (b) - Big = f(q) dependences: 1 - Kr (q = 7 sccm) + Ne (q - var); 2 - Ar (q = 10 sccm) + Ne (q - var); Uig ≈ 830 V

Download (121KB)
7. Рис. 6. (а) — ионный ток в процессе зажигания Е×В-разряда: аргон (q = 5 sccm), dUЭЗП/dt = 2 В/30 мс, Uig = 940 В, ВIig = 0.145 Тл, ВIIig = 0.172 Тл; b — Big = f(Uig) для смеси Kr (q = 4 sccm) + Ne (q = 50 sccm): 1 — режим I (зажигание газ → плазма), 2 — режим II (зажигание плазма → плазма); (б) — Big = f(Uig) для Ne (q = 70 sccm): кривая 1 — газ–плазма (режим I), 2 — плазма–плазма (режим II)

Download (142KB)
8. Fig. 7. Plasma potential in the near-cathode region, argon: (a) - P = 9 ⋅ 10-5 Torr, Ud = 1160 V; (b) - 1 - BK = 0.427 Tesla, Ud = 1160 V; 2 - BK = 0.45 Tesla, Ud = 670 V

Download (115KB)
9. Fig. 8. (a) - ion current from the EEP collector; (b) - ion energy spectrum. Uig = 800 V, Big = 0.184 Tesla; argon, q = 12 sccm; dUEZP/dt = 10 V / 20 ms

Download (136KB)

Copyright (c) 2024 Russian Academy of Sciences