Simulation and selection of the optimal experimental conditions to determine the low-energy parameters of the np interaction in the nd breakup reaction at a neutron energy of 5 MeV

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An experiment to determine the low-energy parameters of np interaction in the nd breakup reaction at a neutron energy of 5 MeV of the RADEX channel of the INR RAS is proposed. The energy of the virtual 1S0 state and the np scattering length can be obtained from the experimental dependence of the reaction yield on the relative energy of motion of the “breakup” neutron and proton in the kinematic region, where the np interaction in the final state is most pronounced. The reaction events were simulated, based on which the optimal conditions for the future experiment were selected.

作者简介

A. Kasparov

Institute for Nuclear Research of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kasparov200191@gmail.com
俄罗斯联邦, Moscow, 117312

M. Mordovskoy

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
俄罗斯联邦, Moscow, 117312

A. Afonin

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
俄罗斯联邦, Moscow, 117312

D. Tsvetkovich

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
俄罗斯联邦, Moscow, 117312

参考

  1. Machleidt R., Sammarruca F., Song Y. // Phys. Rev. C. 1996. V. 53. No. 4. Art. No. R1483.
  2. Stoks V.G.J., Klomp R.A.M., Terheggen C.P.F. et al. // Phys. Rev. C. 1994. V. 49. No. 6. Art. No. 2950.
  3. Miller G.A., Nefkens B.M.K., Slaus I. // Phys. Reports. 1990. V. 194. No. 1—2. P. 1.
  4. Dumbrajs O., Koch R., Pilkuhn H. et al. // Nucl. Phys. B. 1983. V. 216. No. 277. P. 277.
  5. Gonzalez Trotter D.E., Salinas F., Chen Q. et. al. // Phys. Rev. Lett. 1999. V. 83. No. 19. P. 3788.
  6. Huhn V., Watzold L., Weber Ch. et al. // Phys. Rev. C. 2000. V. 63. No. 1. Art. No. 014003.
  7. Gonzalez Trotter D.E., Salinas Meneses F., Tornow W. et al. // Phys. Rev. C. 2006. V. 73. No. 3. Art. No. 034001.
  8. von Witsch W., Ruan X., Witala H. // Phys. Rev. C. 2006. V. 74. No. 1. Art. No. 014001.
  9. Конобеевский Е.С., Бурмистров Ю.М., Зуев С.В. и др. // Ядерн. физика. 2010. Т. 73. № 8. С. 1343; Konobeevski E.S., Burmistrov Yu.M., Zuyev S.V. et al. // Phys. Atom. Nucl. 2010. V. 73. No. 8. P. 1302.
  10. Конобеевский Е.С., Афонин А.А., Зуев С.В. и др. // Ядерн. физика. 2020. Т. 83. № 4. С. 288; Konobeevski E.S., Afonin A.A., Zuyev S.V. et al. // Phys. Atom. Nucl. 2020. V. 83. No. 4. P. 523.
  11. Конобеевский Е.С., Каспаров А.А., Мордовской М.В. и др. // Ядерн. физика. 2022. Т. 85. № 3. С. 216; Konobeevski E.S., Kasparov A.A., Mordovskoy M.V. et al. // Phys. Atom. Nucl. 2022. V. 85. No. 3. P. 289.
  12. Konobeevski E., Kasparov A., Mordovskoy M. et al. // Few-Body Syst. 2017. V. 58. Art. No. 107.
  13. Конобеевский Е.С., Зуев С.В., Каспаров A.A. и др. // Ядерн. физика. 2018. Т. 85. № 5. С. 555; Konobeevski E.S., Zuyev S.V., Kasparov A.A. et al. // Phys. Atom. Nucl. 2018. V. 81. No. 5. P. 595.
  14. Каспаров А.А., Мордовской М.В., Афонин А.А. и др. // Ядерн. физика. 2023. Т. 86. № 1. С. 245; Kasparov A.A., Mordovskoy M.V., Afonin A.A. et al. // Phys. Atom. Nucl. 2023. V. 86. No. 1. P. 44.
  15. Зуев С.В., Каспаров А.А., Конобеевский Е.С. // Изв. РАН. Сер. физ. 2017. Т. 81. № 6. С. 753; Zuyev S.V., Kasparov A.A., Konobeevski E.S. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 6. P. 679.
  16. Мигдал А.Б. // ЖЭТФ. 1955. Т. 28. № 1. С. 10; Migdal A.B. // JETP. 1955. V. 1. No. 1. P. 2.
  17. Watson K.M. // Phys. Rev. 1952. V. 88. No. 5. P. 1163.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024