Comparison of second harmonic generation efficiency in alumo- and germanosilicate glasses at volumetric optical poling

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The second harmonic generation is investigated on microperiodic gratings of nonlinear polarizability photointegrated at volumetric optical poling in alumo- and germanosilicate glasses. The comparison shows the significant impact of nitrogen, phosphorus, and rare-earth element additions. The developed theory of nonlinear-frequency conversion in case of current mechanism allowed to estimate the characteristics and magnitudes of photointegrated nonlinearities in glasses. The sharp dependence of the harmonic generation efficiency on intensity of the component of poling radiation was detected because of the possible influence of photoconductivity, which must be considered when developing perspective samples with photointegrated gratings.

Texto integral

Acesso é fechado

Sobre autores

L. Vostrikova

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences

Autor responsável pela correspondência
Email: vostrik@isp.nsc.ru
Rússia, Novosibirsk

l. Kartashev

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences

Email: vostrik@isp.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Antonyuk B.P., Antonyuk V.B., Frolov A.A. // Opt. Commun. 2000. V. 174. No. 5—6. P. 427.
  2. Балакирев М.К., Вострикова Л.И., Смирнов В.А. // Квант. электрон. 2008. Т. 38. № 8. С. 724; Balakirev M.K., Vostrikova L.I., Smirnov V.A. // Quantum Electron. 2008. V. 38. No. 8. P. 724.
  3. Баскин Э.М., Энтин М.В. // Письма в ЖЭТФ. 1988. Т. 48. № 10. С. 554; Baskin E.M., Entin M.V. // JETP Lett. 1988. V. 48. No. 10. P. 601.
  4. Kovalev V.M., Sonowal K., Savenko I.G. // Phys. Rev. B. 2021. V. 103. No. 2. Art. No. 024513.
  5. Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170E.
  6. Hickstein D.D., Carlson D.R., Mundoor H. et al. // Nature Photonics. 2019. V. 13. No. 7. P. 494.
  7. Balakirev M.K., Kityk I.V., Smirnov V.A. et al. // Phys. Rev. A. 2003. V. 67. No. 2. Art. No. 023806.
  8. Tsutsumi N., Odane C. // J. Opt. Soc. Amer. B. 2003. V. 20. No. 7. P. 1514.
  9. Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2022. V. 12193. Art. No. 121930O.
  10. Liu Y.L., Wang W.J., Gao X.X. et al. // J. Atom. Mol. Sci. 2011. V. 2. No. 4. P. 334.
  11. Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170D.
  12. Nitiss E., Liu T., Grassani D. et al. // ACS Photonics. 2020. V. 7. No. 1. P. 147.
  13. Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 203; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 181.
  14. Porcel M.A.G., Mak J., Taballione C. et al. // Opt. Express. 2017. V. 25. No. 26. P. 33143.
  15. Reddy A.S.S., Kityk A.V., Jedryka J. et al. // Opt. Mater. 2022. V. 123. Art. No. 111858.
  16. Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 198; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 176.
  17. Балакирев М.К., Вострикова Л.И., Смирнов В.А., Энтин М.В. // Письма в ЖЭТФ. 2004. Т. 80. № 1. С. 32; Balakirev M.K., Vostrikova L.I., Smirnov V.A., Entin M.V. // JETP Lett. 2004. V. 80. No. 1. P. 26.
  18. Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989. 560 с.
  19. Мальчукова Е.В., Теруков Е.И. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 956; Malchukova E.V., Terukov E.I. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 797.
  20. Goutaland F., Jander P., Brocklesby W.S., Dai G. // Opt. Mater. 2003. V. 22. No. 4. P. 383.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup: 1 — YAG: Nd3+ laser, 2 — second harmonic converter based on a KTP crystal, 3 — phase-shifting plate, 4 — Glan prism with beveled edges, 5–7 — mirrors, 8, 9 — filters for fundamental and doubled frequency radiation, 10 — shutter, 11 — polarizing element, 12 — lens, 13 — sample, 14 — light guide, 15 — photomultiplier, 16 — voltage strobe converter, 17 — photodiode, 18 — computer.

Baixar (180KB)
3. Fig. 2. Maxima of SHG efficiency at different intensities of polling radiation with a wavelength of λ = 532 nm.

Baixar (82KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024