Magnetization dynamics of a suspension of non-interacting magnetic particles under the presence of static uniform magnetic field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The time process of the magnetization growth of a suspension of non-interacting magnetic particles is studied theoretically under the condition when this process starts developing switching on an external constant uniform magnetic field. It is found that the characteristic relaxation time of the process has the same value at the initial stage and at the final stage of reaching the equilibrium value of the magnetization and contains a minimum in the region of intermediate times.

Texto integral

Acesso é fechado

Sobre autores

A. Ivanov

Ural Federal University

Autor responsável pela correspondência
Email: Alexey.Ivanov@urfu.ru
Rússia, Ekaterinburg

I. Subbotin

Ural Federal University

Email: Alexey.Ivanov@urfu.ru
Rússia, Ekaterinburg

Bibliografia

  1. Шлиомис М.И. // УФН. 1974. Т. 112. С. 427; Shliomis M.I. // Sov. Phys. Usp. 1974. V. 17. No. 2. P. 153.
  2. Розенцвейг Р. Феррогидродинамика. М.: Мир, 1989. 357 с.
  3. Ivanov A.O., Kantorovich S.S., Reznikov E.N. et al. // Phys. Rev. E. 2007. V. 75. No. 6. Art. No. 061405.
  4. Klokkenburg M., Rene B.H., Mendelev V., Ivanov A.O. // J. Phys. Cond. Matter. 2008. V. 20. No. 20. Art. No. 204113.
  5. Диканский Ю.И., Испирян А.Г., Куникин С.А., Радионов А.В. // ЖТФ. 2018. Т. 88. № 1. С. 58; Dikanskii Y.I., Ispiryan A.G., Kunikin S.A., Radionov A.V. // Tech. Phys. 2018. V. 63. No.1. P. 57.
  6. Pshenichnikov A., Lebedev A., Ivanov A.O. // Nanomaterials. 2019. V. 9. No. 12. Art. No. 1711.
  7. Dikansky Y.I., Ispiryan A.G., Arefyev I.M., Kunikin S.A. // Eur. Phys. J. E. 2021. V. 44. No. 1. Art. No. 2.
  8. Русаков В.В., Райхер Ю.Л. // Коллоид. журн. 2021. Т. 83. № 1. С. 86; Rusakov V.V., Raikher Y.L. // Colloid J. 2021. V. 83. No. 1. P. 116.
  9. Dikansky Y.I., Ispiryan A.G., Arefyev I.M. et al. // J. Appl. Phys. 2022. V. 131. No. 20. Art. No. 204701.
  10. Русаков В.В., Райхер Ю.Л. // Коллоид. журн. 2022. Т. 84. № 6. С. 780; Rusakov V.V., Raikher Yu.L. // Colloid J. 2022. V. 84. No. 6. P. 741.
  11. Kantorovich S.S., Rovigatti L., Ivanov A.O. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. No. 25. P. 16601.
  12. Ivanov A.S. // J. Magn. Magn. Mater. 2017. V. 441. P. 620.
  13. Ерин К.В. // Коллоид. журн. 2017. Т. 79. № 1. С. 32; Erin K.V. // Colloid J. 2017. V. 79. No. 1. P. 50.
  14. Ivanov A.O., Zubarev A. // Materials. 2020. V. 13. No. 18. Art. No. 3956.
  15. Бекетова Е.С., Нечаева О.А., Мкртчян В.Д., и др. // Коллоид. журн. 2021. Т. 83. № 2. С. 157; Beketova E.S., Nechaeva O.A., Mkrtchyan V.D. et al. // Colloid J. 2021. V. 83. No. 2. P. 189.
  16. Иванов А.С. // Коллоид. журн. 2022. Т. 84. № 6. С. 732; Ivanov A.S. // Colloid J. 2022. V. 84. No. 6. P. 696.
  17. Лебедев А.В. // Коллоид. журн. 2009. Т. 71. № 1. С. 78; Lebedev A.V. // Colloid J. 2009. V. 71. No. 1 P. 82.
  18. Borin D.Y., Odenbach S., Zubarev A.Y., Chirikov D.N. // J. Phys. Cond. Matter. 2014. V. 26. No. 40. Art. No. 406002.
  19. Lebedev A.V. // J. Magn. Magn. Mater. 2017. V. 431. P. 30.
  20. Ryapolov P.A., Shel’deshova E.V., Postnikov E.B. // J. Molec. Liquids. 2023. V. 382. No. 12. Art. No. 121887.
  21. Ivanov A.S., Pshenichnikov A.V. // J. Magn. Magn. Mater. 2010. V. 322. No. 17. P. 2575.
  22. Pshenichnikov A.F., Elfimova E.A., Ivanov A.O. // J. Chem. Phys. 2011. V. 134. No. 18. Art. No. 184508.
  23. Zakinyan A., Kunikin S., Chernyshov A., Aitov V. // Magnetochem. 2021. V. 7. No. 2. Art. No. 21.
  24. Ерин К.В. // Опт. и спектроск. 2016. Т. 120. № 2. С. 333; Erin K.V. // Opt. Spectrosc. 2016. V. 120. No. 2. P. 320.
  25. Пшеничников А.Ф., Лебедев А.В., Лахтина Е.В., Степанов Г.В. // Вестн. Перм. ун-та. Физ. 2017. № 3(37). С. 54.
  26. Yerin C.V., Vivchar V.I. // J. Magn. Magn. Mater. 2020. V. 498. P. 166144.
  27. Rusakov V.V., Raikher Y.L. // Phil. Trans. Royal Soc. A. 2022. V. 380. No. 2217. Art. No. 20200311.
  28. Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315; Yerin C.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 272.
  29. Белых С.С., Ерин К.В., Фурсова В.В. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 333; Belykh S.S., Yerin C.V., Fursova V.V. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 287.
  30. Полунин В.М., Ряполов П.А., Платонов В.Б., и др. // Акуст. журн. 2017. Т. 63. № 4. С. 371; Polunin V.M., Ryapolov P.A., Platonov V.B. et al. // Acoust. Phys. 2017. V. 63. No. 4. P. 416.
  31. Полунин В.М., Ряполов П.А., Жакин А.И., Шельдешова Е.В. // Акуст. журн. 2019. Т. 65. № 4. С. 477; Polunin V.M., Ryapolov P.A., Zhakin A.I., Sheldeshova E.V. // Acoust. Phys. 2019. V. 65. No. 4. P. 379.
  32. Ryapolov P.A., Polunin V.M., Postnikov E.B. et al. // J. Magn. Magn. Mater. 2020. V. 497. P. 165925.
  33. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshov E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. Р. 295.
  34. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. Р. 300.
  35. Зубарев А.Ю., Юшков А.В. // ЖЭТФ. 1998. Т. 114. № 3. С. 892; Zubarev A.Yu., Yushkov A.V. // JETP. 1998. V. 87. No. 3. P. 484.
  36. Yoshida T., Enpuku K. // Japan J. Appl. Phys. 2009. V. 48. No. 12. Art. No. 127002.
  37. Berkov D.V., Iskakova L.Yu., Zubarev A.Yu. // Phys. Rev. E. 2009. V. 79. No. 2. Art. No. 021407.
  38. Déjardin P.M., Ladieu F. // J. Chem. Phys. 2014. V. 140. No. 3. Art. No. 034506.
  39. Ivanov A.O., Camp P.J. // Phys. Rev. E. 2018. V. 98. No. 5. Art. No. 050602.
  40. Lebedev A.V., Stepanov V.I., Kuznetsov A.A. et al. // Phys. Rev. E. 2019. V. 100. No. 3. Art. No. 032605.
  41. Ilg P., Kröger M. // Phys. Chem. Chem. Phys. 2020. V. 22. No. 39. P. 22244.
  42. Ivanov A.O., Camp P.J. // J. Molec. Liquids. 2022. V. 356. No. 11. Art. No. 119034.
  43. Fang A. // J. Phys. Cond. Matter. 2022. V. 34. No. 11. Art. No. 115102.
  44. Fang A. // J. Phys. Cond. Matter. 2022. V. 34. No. 11. Art. No. 115103.
  45. Ivanov A.O., Camp P.J. // Phys. Rev. E. 2023. V. 107. No. 3. Art. No. 034604.
  46. Rusanov M.S., Kuznetsov M.A., Zverev V.S., Elfimova E.A. // Phys. Rev. E. 2023. V. 108. No. 2. Art. No. 024607.
  47. Brown W.F.Jr. // J. Appl. Phys. 1963. V. 34. No. 4. P. 1319.
  48. Brown W.F.Jr. // Phys. Rev. 1963. V. 130. No. 5. P. 1677.
  49. Coffey W.T., Cregg P.J., Kalmykov Y.P. // in: Advances in Chemical Physics. V. 83. N.Y.: Wiley, 1993. P. 263.
  50. Ivanov A.O., Camp P.J. // Phys. Rev. E. 2020. V. 102. No. 3. Art. No. 032610.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Time curves of the growth of the dimensionless magnetization M(t)/ρm for different values ​​of the applied magnetic field strength, given in units of the Langevin parameter: α = 1 (blue circles, blue curve 1), α = 3 (red triangles, red curve 2), α = 5 (green diamonds, green curve 3), α = 10 (black squares, black curve 4). The symbols indicate the results of the numerical solution of the system of equations (4), the curves correspond to the approximate analytical solution (20).

Baixar (64KB)
3. Fig. 2. Dependence of the effective relaxation time Te (red solid curve 1) on the strength of the applied constant uniform magnetic field, expressed in units of the Langevin parameter α, in comparison with a similar dependence of the time TYE (blue dotted curve 2), empirically proposed in [36].

Baixar (24KB)
4. Fig. 3. The time dependence τe(t)/Te calculated numerically according to expression (21) for different values ​​of the applied magnetic field strength expressed in units of the Langevin parameter: α = 1 (blue circles), α = 3 (red triangles), α = 5 (green diamonds). The dotted curves indicate the predictions of the asymptotics of small times (10). Starting from the characteristic times t ~ 3τB, the effective time τe (t) begins to increase, reaching asymptotically the value Te (19) in the limit t → ∞. This limit cannot be correctly calculated numerically using a finite number of equations of system (4).

Baixar (47KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024