Numerical calculation of electric field enhancement in neutron traps with rough walls coated with superfluid helium
- Authors: Kochev V.D.1, Mogilyuk T.I.2, Kostenko S.S.3, Grigoriev P.D.1,4
-
Affiliations:
- National University of Science and Technology «MISIS»
- National Research Centre «Kurchatov Institute»
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences
- Issue: Vol 88, No 9 (2024)
- Pages: 1459–1464
- Section: Condensed Matter Physics
- URL: https://gynecology.orscience.ru/0367-6765/article/view/681833
- DOI: https://doi.org/10.31857/S0367676524090185
- EDN: https://elibrary.ru/OCWAOA
- ID: 681833
Cite item
Abstract
A film of liquid helium on the surface of material traps for ultra-cold neutrons protects the neutrons from being absorbed by the trap walls. By using surface roughness and an electrostatic field, it is possible to maintain a helium film of sufficient thickness throughout the height of the trap. Our study includes a numerical calculation of the field distribution near the tip of various forms of such wall roughness of the trap and the discussion how this field helps to hold the helium film.
Keywords
Full Text

About the authors
V. D. Kochev
National University of Science and Technology «MISIS»
Email: grigorev@itp.ac.ru
Russian Federation, Moscow
T. I. Mogilyuk
National Research Centre «Kurchatov Institute»
Email: grigorev@itp.ac.ru
Russian Federation, Moscow
S. S. Kostenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: grigorev@itp.ac.ru
Russian Federation, Chernogolovka
P. D. Grigoriev
National University of Science and Technology «MISIS»; L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: grigorev@itp.ac.ru
Russian Federation, Moscow; Chernogolovka
References
- Abele H. // Progr. Part. Nucl. Phys. 2008. V. 60. No. 1. P. 1.
- Ramsey-Musolf M.J., Su S. // Phys. Reports. 2008. V. 456. No. 1. P. 1.
- Dubbers D., Schmidt M.G. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1111.
- Wietfeldt F.E., Greene G.L. // Rev. Mod. Phys. 2011. V. 83. No. 4. P. 1173.
- Gonzalez-Alonso M., Naviliat-Cuncic O., Severijns N. // Progr. Part. Nucl. Phys. 2019. V. 104. P. 165.
- Liu J., Mendenhall M.P., Holley A.T. et al. // Phys. Rev. Lett. 2010. V. 105. No. 18. Art. No. 181803.
- Märkisch B., Mest H., Saul H. et al. // Phys. Rev. Lett. 2019. V. 122. No. 24. Art. No. 242501.
- Sun X., Adamek E., Allgeier B. et al. // Phys. Rev. C. 2020. V. 101. No. 3. Art. No. 035503.
- Serebrov A.P., Varlamov V.E., Kharitonov A.G. et al. // Phys. Rev. C. 2008. V. 78. No. 3. Art. No. 035505.
- Arzumanov S., Bondarenko L., Chernyavsky S. et al. // Phys. Lett. B. 2015. V. 745. Art. No. 79.
- Cеребров А.П., Коломенский Е.А., Фомин А.К. и др. // Письма в ЖЭТФ. 2017. Т. 106. № 10. С. 599; Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // JETP Lett. 2017. V. 106. No. 10. P. 623.
- Serebrov A.P., Kolomenskiy E.A., Fomin A.K. et al. // Phys. Rev. C. 2018. V. 97. No. 5. Art. No. 055503.
- Pattie R. ., Callahan N.B., Cude-Woods C. et al. // EPJ Web Conf. 2019. V. 219. Art. No. 03004.
- Huffman P.R., Brome C.R., Butterworth J.S. et al. // Nature. 2000. V. 403. No. 6765. P. 62.
- Leung K.K.H., Geltenbort P., Ivanov S. et al. // Phys. Rev. C. 2016. V. 94. No. 4. Art. No. 045502.
- Steyerl A., Leung K.K.H., Kaufman C. et al. // Phys. Rev. C. 2017. V. 95. No. 3. Art. No. 035502.
- Ezhov V.F., Andreev A.Z., Bazarov B.A. et al. // JETP Lett. 2018. V. 107. No. 11. P. 671.
- Pattie R.W., Callahan N.B., Cude-Woods C. et al. // Science. 2018. V. 360. No. 6389. P. 627.
- Gonzalez F.M., Fries E.M., Cude-Woods C. et al. // Phys. Rev. Lett. 2021. V. 127. No. 16. Art. No. 162501.
- Nico J.S., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. C. 2005. V. 71. No. 5. Art. No. 055502.
- Yue A.T., Dewey M.S., Gilliam D.M. et al. // Phys. Rev. Lett. 2013. V. 111. No. 22. Art. No. 222501.
- Hirota K., Ichikawa G., Ieki S. // Progr. Theor. Exp. Phys. 2020. V. 2020. No. 12. Art. No. 123C02.
- Grigoriev P.D., Dyugaev A.M. // Phys. Rev. C. 2021. V. 104. No. 5. Art. No. 055501.
- Григорьев П.Д., Дюгаев А.М., Могилюк Т.И., Григорьев А.Д. // Письма в ЖЭТФ. 2021. Т. 114. № 8. С. 560; Grigoriev P.D., Dyugaev A.M., Mogilyuk T.I., Grigoriev A.D. // JETP Lett. 2021. V. 114. No. 8. P. 493.
- Grigoriev P.D., Sadovnikov A.V., Kochev V.D., Dyugaev A.M. // Phys. Rev. C. 2023. V. 108. No. 2. Art. No. 025501.
- Golub R., Jewell C., Ageron P. et al. // Z. Phys. B. Cond. Matter. 1983. V. 51. No. 3. P. 187.
- Bokun R.C. // Sov. J. Nucl. Phys. 1984. V. 40. No. 1. P. 287.
- Aлфименков В.П., Игнатович В.К., Межов-Деглин Л.П. и др. // Препринт ОИЯИ. № 3-2009-197. Дубна, 2009.
- Aлексеев И.Е., Белов С.Е., Ершов К.В. // Изв. РАН. Сер. физ. 2022. T. 86. № 9. С. 1315; Alekseev I.E., Belov S.E., Ershov K.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1088.
- Григорьев С.В., Коваленко Н.А., Павлов К.А. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 11. С. 1526; Grigoriev S.V., Kovalenko N.A., Pavlov K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1561.
- Grigoriev P.D., Zimmer O., Grigoriev A.D., Ziman T. // Phys. Rev. C. 2016. V. 94. No. 2. Art. No. 025504.
- Florkowska B., Wlodek R. // IEEE Trans. Electr. Insul. 1993. V. 28. No. 6. P. 932.
- Arndt D., Bangerth W., Davydov D. et al. // J. Comput. Math. Appl. 2021. V. 81. P. 407.
- Geuzaine C., Remacle J.F. // Int. J. Numer. Meth. Eng. 2009. V. 79. No. 11. P. 1309.
- Marchetti S., Rozzi T. // IEEE Trans. Antennas Propag. 1990. V. 38. No. 9. P. 1333.
- Ito T.M., Ramsey J.C., Yao W. et al. // Rev. Sci. Instrum. 2016. V. 87. No. 4. Art. No. 045113.
- Bourgin Y., Jourlin Y., Parriaux O. et al. // Opt. Express. 2010. V. 18. No. 10. P. 10557.
Supplementary files
