Features of corrosive-mechanical strength of TiNi alloy in different structural states in biological solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We performed the study of the corrosion-mechanical strength and fractographic analysis of fractures of the Ti49.1Ni50.9 alloy in coarse-grained and ultrafine-grained states in biological environments. The study has shown that there is a multidirectional change in the mechanical characteristics of the Ti49.1Ni50.9 alloy in coarse-grained and ultrafine-grained states.

Sobre autores

A. Churakova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Email: churakovaa_a@mail.ru
Ufa, 450075 Russia; Ufa, 450076 Russia

E. Iskhakova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Ufa, 450075 Russia; Ufa, 450076 Russia

E. Vorobiev

Ufa University of Science and Technology

Ufa, 450076 Russia

Bibliografia

  1. Otsuka K., Ren X. // Progr. Mater. Sci. 2005. V. 50. P. 511.
  2. Yamauchi K., Ohkata I., Tsuchiya K., Miyazaki S. Shape Memory and Superelastic Alloys: Technologies and Applications. C.: Woodhead Publ. 2011. 232 p.
  3. Lecce L., Concilio A. Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications. O.: Butterworth-Heinemann. 2011. 934 p.
  4. Zhang J., Somsen C., Simon T. et al. // Acta Mater. 2012. V. 60. P. 1999.
  5. Vandenkerckhove R., Chandrasekaran M., Vermaut P. et al. // Mater. Sci. Eng. A. 2004. V. 378. P. 532.
  6. Asadipour H., Doostmohammadi A., Saeidi N., Moshref-Javadi M. // Phys. Metal. Metallorg. 2019. V. 120. No. 8. P. 740.
  7. Hu T., Chu С., Xin Y. et al. // J. Mater. Res. 2010. V. 25. P. 350.
  8. Амирханова Н.А., Валиев Р.З., Адашева С.Л., Прокофьев Е.А. // Вестн. УГАТУ. 2006. Т. 7. № 1. С. 143.
  9. Ryhanen J., Kallioinen M., Tuukkanen J. et al. // J. Biomed. Mater. Res. 1998. V. 41. No. 3. P. 481.
  10. Petrini L., Migliavacca F. // J. Metall. 2011. Art. No. 501483.
  11. Geetha M., Singh A.K., Asokamani R., Gogia A.K. // Progr. Mater. Sci. 2009. V. 54. No. 3. P. 397.
  12. Rocher P., Medawar L.El., Hornez J.-C. et al. // Scripta Mater. 2004. V. 50. No. 2. P. 255.
  13. Cai C., Song B., Wei O. et al. // Surf. Coat. Technol. 2015. V. 280. P. 194.
  14. Шурыгина Н.А., Глезер А.М., Дьяконов Д.Л., Сундеев Р.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 997; Shurygina N.A., Glezer A.M., Diakonov D.L., Sundeev R.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 771.
  15. Игашева В.П., Налесник О.И. // В кн.: Матер. XI всеросс. научн.-практ. конф. студ. и асп. «Химия и химическая технология в XXI веке». Т. 1. (ТПУ, 2010). С. 55.
  16. Tian H., Schryvers D., Shabalovskaya S., Van Humbeeck J. // Microsc. Microanal. 2009. V. 15. P. 62.
  17. Ionita D., Caposi M., Demetrescu I. et al. // Mater. Corros. 2015. V. 66. No. 5. P. 472.
  18. Марков А.В., Башкова И.О., Молин И.А. // Cб. тр. ВНКСФ – 23 (Екатеринбург, 2017). C. 324.
  19. Коршунов А.В. // Изв. ТПУ. Инжин. георес. 2015. C. 114.
  20. Cui Z, Li S., Zhou J. et al. // Surf. Coat. Technol. 2020. V. 391. Art. No. 125730.
  21. Zhao Y., Bai L., Sun Y. et al. // Corros. Sci. 2021. V. 190. Art. No. 109654.
  22. Kassab E., Frotscher M., Eggeler G. et al. // Mater. Today Commun. 2022. V. 33. Art. No. 104401.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025