Structure and properties of manganese-substituted hydroxyapatite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of calculations of the substitution of calcium atoms for manganese in hydroxyapatite using functional theory methods are presented. Changes in the parameters and volume of the cell, energy bands and energy of substitution formation with increasing number of substitutions in different calcium positions (types 1 and 2) are analyzed in comparison with experimental data. It has been shown that the replacement of calcium cations with manganese occurs predominantly at the type 2 calcium position.

Full Text

Restricted Access

About the authors

V. S. Bystrov

Institute of Mathematical Problems of Biology of the Russian Academy of Sciences, Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Author for correspondence.
Email: vsbys@mail.ru
Russian Federation, Pushchino, 142290

E. V. Paramonova

Institute of Mathematical Problems of Biology of the Russian Academy of Sciences, Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: vsbys@mail.ru
Russian Federation, Pushchino, 142290

L. A. Avakyan

Southern Federal University

Email: vsbys@mail.ru

Faculty of Physics

Russian Federation, Rostov-on-Don, 344090

S. V. Makarova

Institute of Solid-State Chemistry and Mechanochemistry of the Siberian Branch of of the Russian Academy of Sciences

Email: vsbys@mail.ru
Russian Federation, Novosibirsk, 630090

N. V. Bulina

Institute of Solid-State Chemistry and Mechanochemistry of the Siberian Branch of of the Russian Academy of Sciences

Email: vsbys@mail.ru
Russian Federation, Novosibirsk, 630090

References

  1. Epple M., Ganesan K., Heumann R. et al. // J. Mater. Chem. 2010. V. 20. P. 18.
  2. Ducheyne P., Healy K., Hutmacher D.E. et al. Comprehensive biomaterials II. Seven-Volume Set. Amsterdam: Elsevier, 2017.
  3. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science. Oxford: Academic Press, 2013.
  4. Баринов С.М., Комлев В.С. // Неорг. матер. 2016. Т. 52. № 4. С. 383; Barinov S.M., Komlev V.S. // In-org. Mater. 2016. V. 52. P. 339.
  5. Dorozhkin S.V. // Mater. Sci. Eng. C Mater. Biol. Appl. 2015. V. 55. P. 272.
  6. Dorozhkin S.V. // Coatings. 2022. V. 12. P. 1380.
  7. Baltacis K., Bystrov V., Bystrova A. et al. // Materials. 2020. V. 13. P. 4575.
  8. Ratnayake J.T.B., Mucalo M., Dias G.J. // J. Biomed. Mater. Res. B. Appl. Biomater. 2017. V. 105. P. 1285.
  9. Elliott J. C. Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry. Amsterdam: Elsevier, 1994. 404 p.
  10. Kay M.I., Young R.A., Posner A.S. // Nature. 1964. V. 204. P. 1050.
  11. Hughes J.M., Cameron M., Crowley K.D. // Amer. Mineral. 1989. V. 74. P. 870.
  12. Šupova M. // Ceram. Int. 2015. V. 41. P. 9203.
  13. Tite T., Popa A.-C., Balescu L.M. et al. // Materials. 2018. V. 11 P. 2081.
  14. Silva L.M.D., Tavares D.D.S., Santos E.A.D. // Mater. Res. 2020. V. 23. No. 2. Art. No. e20200083.
  15. Li Y., Widodo J., Lim S., Ooi C. P. // J. Mater. Sci. 2012. V. 47. P. 754.
  16. Rau J.V., Fadeeva I.V., Fomin A.S. et al. // ACS Biomater. Sci. Eng. 2019. V. 5. P. 6632.
  17. Fadeeva I., Kalita V., Komlev D. // Materials. 2020. V. 13. P. 4411.
  18. Фадеева И.В., Фомин А.С., Баринов С.М. и др. // Неорг. матер. 2020. Т. 56. № 7. С. 738; Fadeeva I.V., Fomin A.S., Barinov S.M. et al. // Inorg. Mater. 2020. V. 56. No. 7. P. 700.
  19. Liu H., Cui X., Lu X. et al. // Chem. Geol. 2021. V. 579. Art. No. 120354.
  20. Shurtakova D.V., Grishin P.O., Gafurov M.R., Mamin G. V. // Crystals. 2021. V. 11. P. 1050.
  21. Murzakhanov F., Gabbasov B., Iskhakova K. et al. // Magn. Reson. Solids. 2017. V. 19. Art. No. 17207.
  22. Torres P.M.C., Vieira S.I., Cerqueira A.R. et al. // J. Inorg. Biochem. 2014. V. 136. P. 57.
  23. Bystrov V.S. // Math. Biol. Bioinform. 2017. V. 12. P. 14.
  24. Bystrov V., Paramonova E., Avakyan L. et al. // Nanomater. 2021. V. 11. P. 2752.
  25. Bystrov V.S., Paramonova E.V., Avakyan L.A. et al. // Materials. 2023. V. 16. P. 5945.
  26. Matsunaga K., Kuwabara A. // Phys. Rev. B. 2007. V. 75. Art. No. 014102.
  27. Slepko A., Demkov A.A. // Phys. Rev. B. Cond. Matter Mater. Phys. 2011. V. 84. Art. No. 134108.
  28. Sadetskaya A.V., Bobrysheva N.P., Osmolowsky M.G. et al. // Mater. Charact. 2021. V. 173. Art. No. 110911.
  29. Bystrov V.S., Coutinho J., Bystrova A.V. et al. // J. Phys. D. Appl. Phys. 2015. V. 48. Art. No. 195302.
  30. Avakyan L.A., Paramonova E.V., Coutinho J. et al // J. Chem. Phys. 2018. V. 148. P. 154706.
  31. Bystrov V.S., Avakyan L.A., Paramonova E.V., Coutinho J. // J. Chem. Phys. C. 2019. V. 123. P. 4856.
  32. Bystrov V.S., Piccirillo C., Tobaldi D.M. et al. // Appl. Catal. B. Environ. 2016. V. 196. P. 100.
  33. Avakyan L., Paramonova E., Bystrov V. et al. // Nanomaterials. 2021. V. 11. P. 2978.
  34. Bystrov V.S., Paramonova E.V., Bystrova A.V. et al. // Ferroelectrics. 2022. V. 590. P. 41.
  35. Bulina N.V., Chaikina M.V., Andreev A.S. et al. // Eur. J. Inorg. Chem. 2014. V. 2014. P. 4810.
  36. Булина Н.В., Чайкина М.В., Просанов И.Ю. // Неорг. матер. 2018. Т. 54. № 8. С. 866; Bulina N. V., Chaikina M. V., Prosanov I. Y. // Inorg. Mater. 2018. V. 54. P. 820.
  37. Bulina N.V., Makarova S.V., Prosanov I.Y. et al. // J. Solid State Chem. 2020. V. 282. P. 121076.
  38. Bulina N.V., Avakyan L.A., Makarova S.V. et al. // Minerals. 2023. V. 13. P. 102.
  39. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  40. Krukau A.V., Vydrov O.A., Izmaylov A.F., Scuseria G.E. // J. Chem. Phys. 2006. V. 125. P. 224106.
  41. https://www.quantum-espresso.org/.
  42. Lala S., Ghosh M., Das P.K. et al. // Dalton Trans. 2015. V. 44. P. 20087.
  43. Котов Л.В., Северин П.А., Власов В.С., Миронов В.В. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 422; Kotov L.N., Severin P.A., Vlasov V.S., Mironov V.V. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 367.
  44. Шуртакова Д.В. Природа примесных центров в синтетических фосфатах кальция по данным электронного парамагнитного резонанса. Дисс. … канд. физ.-мат. наук. Казань: Казанский (Приволжский) фед. ун-т, 2023. 122 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model of the rhombic supercell of HAP (352 atoms) and its geometric relationship with the model of the hexagonal unit cell containing 44 atoms (marked with black thick lines, the black dotted line shows its periodic repetition), in projection onto the z-axis. The calcium positions Ca1 (green circle of radius r(H–Ca1)) and Ca2 (blue circle of radius r(O–Ca2)), are located around the axis of the OH-group channel. Atom designations: blue – Ca, red – O, brown – P, white – H (quoted from article [25]).

Download (168KB)
3. Fig. 2. Changes in the parameters (a) and volume (b) of the hexagonal cell of HAp at different concentrations x(Mn) of Mn/Ca substitution in the Ca1 and Ca2 positions in comparison with experimental data (Mn_exp1 — data from [42]; Mn_exp2 — experimental results of this work).

Download (262KB)
4. Fig. 3. Changes in electron energy levels with increasing x(Mn) in HAp with nMn/Ca1 (a) and nMn/Ca2 (b) substitutions. Here Eg = Ec — Ev is the band gap of impurity-free HAp, Ec is the bottom of the conduction band, Ev is the top of the valence band; Eg* = Ec — Ei1 is the photoexcitation energy of electrons or the new effective band gap of HAp-Mn, ∆Εi = Ei1 — Ei2 is the band of energy levels arising inside Eg and changing with increasing x; Ei1 and Ei2 are the upper and lower edges of the ∆Ei band; E_LUMO and E_HOMO are the energies of the lowest unoccupied and highest occupied molecular orbitals, respectively. Dependences of the band gap width Eg and the value of Eg* (c), as well as the energy of substitution formation Ef (d) on x(Mn) in HAp-Mn.

Download (390KB)

Copyright (c) 2024 Russian Academy of Sciences