Towards -Symmetric Optical Dimer Fabrication without a Light-Absorbing Material

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider an approach to engineer an optical dimer of particles operating in the spectral region near the dipolar resonance that exhibits parity–time symmetry-like features. Both particles are assumed to be made of a gain medium with the same refractive index and extinction coefficient. We suggest introducing a gain–loss contrast by altering the radiative loss of the particles through changing their shape. To demonstrate our approach, we consider a dimer of infinite filled and hollow cylinders. We demonstrate that a larger hollow diameter leads to a stronger radiative decay. Then we find the parameters of a dimer that has an exceptional point at a real frequency and exhibits two real eigenfrequencies when the gain–loss contrast is decreased.

Sobre autores

A. Dmitriev

School of Physics and Engineering, ITMO University, 197101, St. Petersburg, Russia

Email: alexey.dmitriev@metalab.ifmo.ru

K. Baryshnikova

School of Physics and Engineering, ITMO University, 197101, St. Petersburg, Russia

Email: alexey.dmitriev@metalab.ifmo.ru

M. Rybin

Ioffe Institute, 194021, St. Petersburg, Russia

Autor responsável pela correspondência
Email: alexey.dmitriev@metalab.ifmo.ru

Bibliografia

  1. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nat. Phys. 14, 11 (2018).
  2. L. Feng, R. El-Ganainy, and L. Ge, Nature Photon. 11, 752 (2017).
  3. M.-A. Miri and A. Alu', Science 363, eaar7709 (2019).
  4. S¸. K. O¨ zdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater. 18, 783 (2019).
  5. L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, Science 346, 972 (2014).
  6. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011).
  7. L. Feng, X. Zhu, S. Yang, H. Zhu, P. Zhang, X. Yin, Y. Wang, X. Zhang, Opt. Express 22, 1760 (2013).
  8. L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, Science 333, 729 (2011).
  9. K. J. H. Peters and S. R. K. Rodriguez, Phys. Rev. Lett. 129, 013901 (2022).
  10. B. Peng, S¸. K. O¨ zdemir, F. Lei, F. Moni, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
  11. H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, Nature 548, 187 (2017).
  12. A. F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F. Nori, Nat. Rev. Phys. 1, 19 (2019).
  13. A. A. Dmitriev and M. V. Rybin, Phys. Rev. A 99, 063837 (2019).
  14. A. Egel, L. Pattelli, G. Mazzamuto, D. S. Wiersma, and U. Lemmer, Journal of Quantitative Spectroscopy and Radiative Transfer 199, 103 (2017).
  15. D. Felbacq, G. Tayeb, and D. Maystre, J. Opt. Soc. Am. A 11, 2526 (1994).
  16. K. M. Leung and Y. Qiu, Phys. Rev. B 48, 7767 (1993).
  17. P. Lloyd and P. Smith, Adv. Phys. 21, 69 (1972).
  18. P. Markoˇs and V. Kuzmiak, Phys. Rev. A 94, 033845 (2016).
  19. P. Markoˇs, Opt.Commun. 361, 65 (2016).
  20. E. E. Maslova, M. F. Limonov, and M. V. Rybin, Opt. Lett. 43, 5516 (2018).
  21. A. Moroz, J. Phys. Condens. Matter 6, 171 (1994).
  22. N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, Phys. Rev. E 52, 1135 (1995).
  23. G. Tayeb and S. Enoch, J. Opt. Soc. Am. A 21, 1417 (2004).
  24. X. Wang, X.-G. Zhang, Q. Yu, and B. Harmon, Phys. Rev. B 47, 4161 (1993).
  25. E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, ACS Nano 14, 8149 (2020).
  26. F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 20, 11153 (2012).
  27. Z.-B. Fan, H.-Y. Qiu, H.-L. Zhang, X.-N. Pang, L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, and J.-W. Dong, Light Sci. Appl. 8, 67 (2019).
  28. M. V. Rybin, K. B. Samusev, P. V. Kapitanova, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, Phys. Rev. B 95, 165119 (2017).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023