The econophysical model of innovation diffusion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Analysis and evaluation of innovation efficiency require the development of tools to model their dissemination process within the industry. This paper presents a model of innovation diffusion based on physical approaches, describing stages of accelerating and decelerating growth. An exponential growth is described using a diffusion model, while a logarithmic one employs an electrical engineering model. The paper presents the correspondence of physical parameters with their economic counterpart: size of a company; characteristic of speed of information exchange between firms; company’s willingness to innovate; inter-firm influence and the breakthrough level of innovation. The theoretical model obtained was tested on historical data of innovation implementation in the fuel and energy complex, followed by adjustments of coefficients depending on the branch of innovation implementation. The developed model is applicable for describing the process of innovation dissemination in any industry in the country, as well as for investment and business planning in companies and decision-making on investments in innovation projects. When applied in industries with low levels of innovation activity, an increase in the level of high-tech production and the share of organizations implementing technological innovations is predicted. Using the example of Russia’s fuel and energy sector, rising in the technological level of enterprises and a decrease in import dependence are forecasted.

Full Text

Restricted Access

About the authors

O. V. Zhdaneev

Russian Presidential Academy of National Economy and Public Administration (RANEPA)

Author for correspondence.
Email: Zhdaneev@rosenergo.gov.ru
Russian Federation, Moscow

I. R. Ovsyannikov

Center of Operational Services; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”

Email: ovsyannikov.ir@phystech.edu
Russian Federation, Moscow

References

  1. Голышева Е. А., Жданеев О. В., Коренев В. В., Лядов А. С., Рубцов А. С. (2020). Нефтехимическая отрасль России: анализ текущего состояния и перспектив развития // Журнал прикладной химии. Т. 93. № 10. С. 1499–1507. doi: 10.31857/S0044461820100126 [Golysheva E. A., Zhdaneev O. V., Korenev V. V., Lyadov A. S., Rubtsov A. S. (2020). The petrochemical industry of Russia: Analysis of the current state and development prospects. Journal of Applied Chemistry, 93, 10, 1499–1507. doi: 10.31857/S0044461820100126 (in Russian).]
  2. Цветкова Н. А., Туккель И. Л. (2017). Модели распространения инноваций: от описания к управлению инновационными процессами // Инновации. № 11 (229). Режим доступа: https://cyberleninka.ru/article/n/modeli-rasprostraneniya-innovatsiy-ot-opisaniya-k-upravleniyu-innovatsionnymi-protsessami [Tsvetkova N. A., Tukkell I. L. (2017). Models of innovation diffusion: From description to management of innovation processes. Innovations, 11 (229). Available at: https://cyberleninka.ru/article/n/modeli-rasprostraneniya-innovatsiy-ot-opisaniya-k-upravleniyu-innovatsionnymi-protsessami (in Russian).]
  3. Цветкова Н. А. (2018). О взаимном влиянии инноваций // Инновации. № 3 (233). Режим доступа: https://cyberleninka.ru/article/n/o-vzaimnom-vliyanii-innovatsiy [Tsvetkova N. A. (2018).On the mutual influence of innovations. Innovations, 3 (233). Available at: https://cyberleninka.ru/article/n/o-vzaimnom-vliyanii-innovatsiy (in Russian).]
  4. Abrahamson E., Rosenkopf L. (1997). Social network effects on the extent of innovation diffusion: A computer simulation. Organizational Science, 8, 3, 289–309.
  5. Adiano C., Roth A. V. (1994). Beyond the house of quality: Dynamic QFD. Benchmarking for Quality Management & Technology, 1, 1, 25–37.
  6. Bass F. M. (1969). A new product growth for model consumer durables. Management Science, 15, 5, 215–227.
  7. Benhabib J., Perla J., Tonetti C. (2016). The growth dynamics of innovation, diffusion, and the technology frontier. [Report]. N.Y.: New York University. 1057 p.
  8. Delre S. A., Jager W., Janssen M. A. (2007). Diffusion dynamics in small-world networks with heterogeneous consumers. Computational and Mathematical Organization Theory, 13, 2, 185–202.
  9. Fuenfschilling L., Truffer B. (2014). The structuration of socio-technical regimes: Conceptual foundations from institutional theory. Research Policy, 43, 772–791. doi: 10.1016/j.respol.2013.10.010
  10. Galitskaya E., Zhdaneev O. (2022). Development of electrolysis technologies for hydrogen production: A case study of green steel manufacturing in the Russian Federation. Environmental Technology and Innovation, 27, 102517 (in English). doi: 10.1016/j.eti.2022.102517
  11. Lуpez-Pintado D. (2008). Diffusion in complex social networks. Games and Economic Behavior, 62, 2, 573–590.
  12. Mahajan V., Peterson R. (1985). Models for innovation diffusion. Quantitative Applications in the Social Sciences. Sage University Paper. Newbury Park: SAGE Publications, Inc.
  13. Mardani A., Jusoh A., Zavadskas E. K., Cavallaro E. K., Khalifah Z. (2015). Sustainable and renewable energy: An overview of the application of multiple criteria decision making techniques and approaches. Sustainability, 7, 10, 13947–13984.
  14. Meade N., Islam T. (2006). Modelling and forecasting the diffusion of innovation — a 25-year review. International Journal of Forecast, 22, 514–545.
  15. Moskalev A., Tsygankov N. (2021). Diffusion model of various modifications of an innovative product. E3S Web of Conferences. EDP Sciences, 320, 03004 (in English).
  16. Ovsyannikov I. R., Zhdaneev O. V. (2024). Forecast of innovative activity in key areas of energy transition technologies based on analysis of patent activity. International Journal of Hydrogen Energy, 87, 1261–1276. doi: 10.1016/j.ijhydene.2024.08.375 (in English).
  17. Pelegrin B., Fernandez P., Perez M. D.G. (2014). Profit maximization and reduction of the cannibalization effect in chain expansion. Annals of Operations Research, 1–19.
  18. Rogers E. M. (2009). Innovation diffusion: Social network models. In: Encyclopedia of complexity science and technology, 4554–4562.
  19. Tsvetkova N. A., Tukkel I. L. Ablyazov V. I. (2017). Simulation modeling the spread of innovations. 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). St. Petersburg, Russia, 675–677 (in English). doi: 10.1109/SCM.2017.7970686 Available at: https://ieeexplore.ieee.org/abstract/document/7970686
  20. Young H. P. (2009). Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. American Economic Review, 99, 5, 1899–1924.
  21. Zhdaneev O. V., Frolov K. N. (2024). Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition. International Journal of Hydrogen Energy, 58, 1418–1428 (in English). doi: 10.1016/j.ijhydene.2024.01.285

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences