The paradox of capital intensity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Reducing the capital intensity of production makes possible to maintain economic growth at a low rate of capital accumulation. However, the relationship between the development of the knowledge economy and the dynamics of capital intensity is complex. In some periods it is positive, in others it is negative. It is acceptable to analyze the capital intensity paradox by analogy with the productivity paradox (Solow’s paradox). To identify how the paradox of capital intensity can be formed, the article builds up mathematical model of updating the technological base of production. The peculiarity of the model is both its multiphase nature and the differentiation of investments in current production, in basic research, and in applied developments. Logistic functions are used to describe the field of basic research and the field of production. Such functions allow us to take into account the existence of a positive scale effect in these areas and the fact that it persists only up to a certain amount of resources used. The model shows not only the alternation of long waves of technological development, but also the overlapping of waves on each other. An important feature of this model is: the change of phases of development is based on a certain economic logic, and is not set exogenously. An illustrative calculation based on the model was performed, as a result of which the trajectory of changes in the capital intensity of production was obtained. The configuration of this trajectory is close to how the capital intensity of production in the US economy really changed in the period 1960–2022. The proposed model demonstrates the connection of the capital intensity paradox with the periodic updating of general-purpose technologies, with the Kondratiev waves generated by these updates.

Texto integral

Acesso é fechado

Sobre autores

V. Dementiev

Central Economics and Mathematics Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vedementev@rambler.ru

Corresponding member of the Russian Academy of Sciences

Rússia, Moscow

Bibliografia

  1. Аганбегян Г. А. (2023). Инновации в России: от высокого знания и наличия перспективных научных заделов к эффективному социально-экономическому развитию // Экономическое возрождение России. № 2. С. 13–26. doi: 10.37930/1990-9780-2023-2(76)-13-26 [Aganbegyan A. G. (2023). Innovations in Russia: From possessing the higher knowledge and promising scientific groundwork towards effective socio-economic development. Economic Revival of Russia, 2, 13–26. doi: 10.37930/1990-9780-2023-2(76)-13-26 (in Russian).]
  2. Андрукович П. Ф. (2023). Модели длинных волн Н. Д. Кондратьева для трех крупных стран Европы // Экономическая наука современной России. № 3. C. 47–66. doi: 10.33293/1609-1442-2023-3(102)-47-66 [Andrukovich P. F. (2023). Kondratiev N. D. long wave models for three large European countries. Economics of Contemporary Russia, 3, 47–66. doi: 10.33293/1609-1442-2023-3(102)-47-66 (in Russian).]
  3. Глазьев С. Ю. (1993). Теория долгосрочного технико-экономического развития. М.: ВлаДар. [Glazyev S.Yu. (1993). Theory of long-term technical and economic development. Moscow: Vladar (in Russian).]
  4. Дементьев В. Е. (2021). Модель интерференции длинных волн экономического развития // Компьютерные исследования и моделирование. Т. 13. Вып. 3. C. 649–663. [Dementiev V. E. (2021). The model of interference of long waves of economic development. Compute Research and Modeling, 13, 3, 649–663 (in Russian).]
  5. Дементьев В. Е. (2023). Обновление технологической базы экономики и реальные процентные ставки // Журнал Новой экономической ассоциации. № 3 (60). С. 104–119. doi: 10.31737/22212264_2023_3_104-119, EDN: LBKSGQ [Dementiev V. E. (2023). Updating the technological base of the economy and real interest rates. Journal of the New Economic Association, 3 (60), 104–119. doi: 10.31737/22212264_2023_3_104-119, EDN: LBKSGQ (in Russian).]
  6. Лавровский Б. Л., Чуваев А. В. (2022). О соотношении экономической динамики и нормы накопления: международный опыт // Проблемы прогнозирования. № 2 (191). С. 6–16. doi: 10.47711/0868-6351-191-6-16 [Lavrovskii B. L., Chuvaev A. V. (2022). On the relationship of economic dynamics and accumulation rate: International experience. Studies on Russian Economic Development, 2 (191), 6–16 (in Russian); 33, 2, 127–134. doi: 10.1134/S1075700722020071 (in English).]
  7. Маевский В. И., Рубинштейн А.А. (2023). Волны Кондратьева и современная макроэкономика // Научные труды Вольного экономического общества России. № 2. С. 87–110. doi: 10.38197/2072-2060-2023-240-2-87-110 [Maevsky V. I., Rubinstein A. A. (2023). Kondratieff waves and modern macroeconomics. Scientific Works of the Free Economic Society of Russia, 2, 87–110. doi: 10.38197/2072-2060-2023-240-2-87-110 (in Russian).]
  8. Acemoglu D., Autor D., Dorn D., Hanson G. H., Price B. (2014). Return of the Solow paradox? IT, productivity, and employment in US manufacturing. American Economic Review, 104 (5), 394–399.
  9. Aghion P., Antonin C., Bunel S., Jaravel X. (2022). The effects of automation on labor demand: A survey of the recent literature. In: Robots and AI: A new economic era. L. Y. Ing, G. M. Grossman (eds.). N.Y.: Routledge, 15–39. doi: 10.4324/9781003275534-2
  10. Bas J., Nahuis R. (2002). A general purpose technology explains the Solow paradox and wage inequality. Economics Letters, 74, 2, 243–250.
  11. Brynjolfsson E., Rock D., Syverson C. (2019). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. In: The economics of artificial intelligence: an agenda. Agrawal A., Cans J., Goldfarb A. (eds.). Chicago: University of Chicago Press, 23–60.
  12. Capello R., Lenzi C. (2022). Giovanni Perucca the modern Solow paradox. In search for explanations. Structural Change and Economic Dynamics, 63, 66–180. doi: 10.1016/j.strueco.2022.09.013
  13. Capital productivity (1996). McKinsey Global Institute. Washington. Available at: https://www.mckinsey.com/capabilities/operations/our-insights/capital-productivity
  14. Derkacz A. J. (2020). Capital intensity of investments and GDP dynamics. SSRN Electronic Journal. doi: 10.2139/ssrn.3639572
  15. Helpman E., Trajtenberg M. (1994). A time to sow and a time to reap: Growth based on general purpose technologies. National Bureau of Economic Research, Working paper 4854. doi: 10.3386/w4854
  16. Ing L. Y., Grossman G. M. (eds.). (2022). Robots and AI: A new economic era. 1st ed. N.Y.: Routledge. doi: 10.4324/9781003275534
  17. Kalecki M. (1954). Theory of economic dynamics. An essay on cyclical and long-run changes in capitalist economy. London: Allen & Unwin Ltd. 178 p.
  18. Solow R. M. (1987). We’d better watch out. New York Times Book Review, 36.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Share of investment in knowledge and human capital (left scale) in US GDP (left scale, %) and capital intensity of production in the US (right scale, %) Source: capital intensity of production calculated based on data from the Bureau of Economic Analysis, USA.

Baixar (118KB)
3. Fig. 2. The relationship between capital intensity of production (Y axis) and the share of investment in human capital and knowledge (X axis) in the US economy, %

Baixar (71KB)
4. Fig. 3. Graphs of production volumes using different technologies, conventional units.

Baixar (118KB)
5. Fig. 4. Graphs of changes in capital intensity: a) in the US economy; b) in the model of technological development (based on the results of illustrative calculations)

Baixar (147KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024