Assessment of financial contagion of the stock markets of Russia, USA, China and European countries in 2019–2024, using the copula method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article examines the transmission of financial contagion between global stock indices, such as the S&P 500 (USA), STOXX 600 (European countries), Shanghai Composite (China) and RTS (Russia), during the pandemic and new anti-Russian sanctions. ARMA–TGARCH models were used to cleanse the indices’ returns from their own trends and volatility. Shock periods were identified based on the 90th percentile of conditional return volatility. The construction of Gaussian and Student copulas for shock and relatively calm periods made it possible to estimate the change in dependencies between index returns taking into account their marginal distributions. The study confirmed financial contagion between all indices (except for the S&P 500 — STOXX 600 pair) during the acute phase of the pandemic, as well as contagion between the European countries index, on the one hand, and the American and Chinese indices, on the other hand, during the period of new sanctions. Calculating the dependencies for the upper and lower tails of the distribution revealed a greater joint reaction of markets to negative shocks than to positive shocks, and demonstrated the dominance of the wealth channel in contagion compared to the portfolio rebalancing channel. The study develops new progressive methods for analyzing the consequences of global risks for the functioning of national financial systems and assessing the effects of financial contagion. It can be useful for investors to manage portfolios and hedge risks, and for governments to pursue effective financial stabilization policies during periods of global shocks.

About the authors

M. Y. Malkina

Center for Macro and Microeconomics

Email: mmuri@yandex.ru
Nizhny Novgorod, Russia

V. V. Osey

National Research Nizhny Novgorod State University named after N. I. Lobachevsky

Email: osejveronika@gmail.com
Nizhny Novgorod, Russia

E. D. Gavrilova

National Research Nizhny Novgorod State University named after N. I. Lobachevsky

Email: yekaterinagavrilova01@gmail.com
Nizhny Novgorod, Russia

K. S. Flores Tuco

National Research Nizhny Novgorod State University named after N. I. Lobachevsky

Email: florestucokimberlysarahi@gmail.com
Nizhny Novgorod, Russia

M. A. Lukashina

National Research Nizhny Novgorod State University named after N. I. Lobachevsky

Email: missis.lukashina03@mail.ru
Nizhny Novgorod, Russia

References

  1. Артамонов Н. В., Ивин Е. А., Курбацкий А. Н., Фантаццини Д. (2021). Введение в анализ временных рядов: учебное пособие для вузов. Вологда: ВолНЦ РАН. 134 с. Режим доступа: https://clck.ru/3AtL3H [Artamonov N. V., Ivin E. A., Kurbatskii A. N., Fantazzini D. (2021). Introduction to time series analysis: A tutorial for universities. Vologda: VolSC RAN. 134 p. Available at: https://clck.ru/3AtL3H (in Russian).]
  2. Благовещенский Ю. Н. (2012). Основные элементы теории копул // Прикладная эконометрика. Т. 26. № 2. С. 113–130. [Blagoveschensky Y. N. (2012). Basics of copula’s theory. Applied Econometrics, 26 (2), 113–130 (in Russian).]
  3. Бусыгин С. В., Шарыпов Р. О. (2019). Применение копул в многомерном анализе обменных курсов на примере развивающихся стран Европы // Мир экономики и управления. Т. 19. № 3. C. 58–72. doi: 10.25205/2542-0429-2019-19-3-58-72 [Busygin S. V., Sharypov R. O. (2019). Copula approach in multivariate exchange rate analysis of developing countries in Eastern Europe. World of Economics and Management, 19 (3), 58–72. doi: 10.25205/2542-0429-2019-19-3-58-72 (in Russian).]
  4. Кендысь А. М., Труш Н. Н. (2024). Применение моделей копул в анализе акций фондового рынка // Информатика. Т. 21. № 2. С. 24–35. doi: 10.37661/1816-0301-2024-21-2-24-35 [Kendys A. M., Troush M. M. (2024). Application of copula models in stock market analysis. Informatics, 21 (2), 24–35. doi: 10.37661/1816-0301-2024-21-2-24-35 (in Russian).]
  5. Пеникас Г. И. (2010а). Модели «копула» в приложении к задачам финансов // Журнал Новой экономической ассоциации. № 7 (7). C. 24–44. [Penikas H. I. (2010). Financial applications of copula-models. The Journal of the New Economic Association, 7 (7), 24–44 (in Russian).]
  6. Пеникас Г. И. (2010б). Модели «копула» в управлении валютным риском банка // Прикладная эконометрика. № 1 (17). C. 62–87. [Penikas H. I. (2010). Copula models in bank currency risk management. Applied Econometrics, 1 (17), 62–87 (in Russian).]
  7. Пеникас Г. И., Симакова В. Б. (2009). Управление процентным риском на основе копулы-GARCH моделей // Прикладная эконометрика. № 1 (13). С. 3–36. [Penikas H. I., Simakova V. B. (2012). Interest rate risk management based on copula-GARCH models. Applied Econometrics, 1 (13), 3–36 (in Russian).]
  8. Правдухин М. М. (2019). Применение копула-функций в управлении риском портфеля акций // Финансы и бизнес. № 15 (1). С. 33–58. doi: 10.31085/1814-4802-2019-15-1-33-58 [Pravdukhin M. M. (2019). Application of copula-functions in portfolio risk management. Finance and Business, 15 (1), 33–58. doi: 10.31085/1814-4802-2019-15-1-33-58 (in Russian).]
  9. Фантаццини Д. (2011а). Моделирование многомерных распределений c использованием копула-функций. Часть I // Прикладная эконометрика. № 22 (2). С. 98–134. [Fantazzini D. (2011a). Analysis of multidimensional probability distributions with copula functions. Part I. Applied Econometrics, 22 (2), 98–134 (in Russian).]
  10. Фантаццини Д. (2011б). Моделирование многомерных распределений c использованием копула-функций. Часть II // Прикладная эконометрика. № 23 (3). С. 98–132. [Fantazzini D. (2011b). Analysis of multidimensional probability distributions with copula functions. Part II. Applied Econometrics, 23 (3), 98–132 (in Russian).]
  11. Фантаццини Д. (2011в). Моделирование многомерных распределений c использованием копула-функций. Часть III // Прикладная эконометрика. № 24 (4). С. 100–130. [Fantazzini D. (2011c). Analysis of multidimensional probability distributions with copula functions. Part II. Applied Econometrics, 24 (4), 100–130 (in Russian).]
  12. Alqaralleh H., Canepa A. (2021). Evidence of stock market contagion during the COVID-19 pandemic: A wavelet-copula-GARCH approach. Journal of Risk and Financial Management, 14 (7), 329. doi: 10.3390/jrfm14070329
  13. Benkraiem R., Garfatta R., Lakhal F., Zorgati I. (2022). Financial contagion intensity during the COVID-19 outbreak: A copula approach. International Review of Financial Analysis, 81, 102136. doi: 10.1016/j.irfa.2022.102136
  14. Bollerslev T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31 (3), 307– 327. doi: 10.1016/0304-4076 (86)90063-1
  15. Chen S., Li Q., Wang Q., Zhang Y. Y. (2023). Multivariate models of commodity futures markets: A dynamic copula approach. Empirical Economics, 64, 3037–3057. doi: 10.1007/s00181-023-02373-2
  16. Cubillos-Rocha J.S., Gomez-Gonzalez J.E., Melo-Velandia L.F. (2019). Detecting exchange rate contagion using copula functions. The North American Journal of Economics and Finance, 47, 13–22. doi: 10.1016/j.najef.2018.12.001
  17. Ding H., Kim H.-G., Park S. Y. (2016). Crude oil and stock markets: Causal relationships in tails? Energy Economics, 59, 58–69. doi: 10.1016/j.eneco.2016.07.013
  18. Engle R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50 (4), 987–1007. doi: 10.2307/1912773
  19. Fenech J.-P., Vosgha H. (2019). Oil price and Gulf Corporation Council stock indices: New evidence from time-varying copula models. Economic Modelling, 77, 81–91. doi: 10.1016/j.econmod.2018.09.009
  20. Forbes K., Rigobon R. (2002). No contagion, only interdependence: Measuring stock market co-movements. Journal of Finance, 57 (5), 2223–2261. Available at: http://www.jstor.org/stable/3094510
  21. Fry R., Martin V. L., Tang C. (2010). A new class of tests of contagion with applications. Journal of Business and Economic Statistics, 28 (3), 423–437. doi: 10.1198/jbes.2010.06060
  22. Fry-McKibbin R., Hsiao C. Y.L. (2018). Extremal dependence tests for contagion. Econometric Reviews, 37 (6), 626– 649. doi: 10.1080/07474938.2015.1122270
  23. Gomez-Gonzalez J.E., Rojas-Espinosa W. (2019). Detecting contagion in Asian exchange rate markets using asymmetric DCC–GARCH and R-vine copulas. Economic Systems, 43 (3–4), 100717. doi: 10.1016/j.ecosys.2019.100717
  24. Jayech S. (2016). The contagion channels of July–August-2011 stock market crash: A DAG-copula based approach. European Journal of Operational Research, 249 (2), 631–646. doi: 10.1016/j.ejor.2015.08.061
  25. Lu Y., Xiao D., Zheng Z. (2023). Assessing stock market contagion and complex dynamic risk spillovers during COVID-19 pandemic. Nonlinear Dynamics, 111, 8853–8880. doi: 10.1007/s11071-023-08282-4
  26. Luo C., Liu L., Wang D. (2021). Multiscale financial risk contagion between international stock markets: Evidence from EMD–Copula–CoVaR analysis. The North American Journal of Economics and Finance, 58, 101512. doi: 10.1016/j.najef.2021.101512
  27. Nelsen R. B. (2006). An introduction to copulas. 2nd ed. N.Y.: Springer-Verlag. 272 p. doi: 10.1007/0-387-28678-0
  28. Rodriguez J. C. (2007). Measuring financial contagion: A copula approach. Journal of Empirical Finance, 14 (3), 401– 423. doi: 10.1016/j.jempfin.2006.07.002
  29. Tian M., Guo F., Niu R. (2022). Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model. The North American Journal of Economics and Finance, 63, 101817. doi: 10.1016/j.najef.2022.101817
  30. Wang H., Yuan Y., Li Y., Wang X. (2021). Financial contagion and contagion channels in the forex market: A new approach via the dynamic mixture copula-extreme value theory. Economic Modelling, 94, 401–414. doi: 10.1016/j.econmod.2020.10.002
  31. Wen X., Wei Y., Huang D. (2012). Measuring contagion between energy market and stock market during financial crisis: A copula approach. Energy Economics, 34 (5), 1435–1446. doi: 10.1016/j.eneco.2012.06.021
  32. Zhang P., Lv Z.-X., Pei Z., Zhao Y. (2023). Systemic risk spillover of financial institutions in China: A copula-DCC-GARCH approach. Journal of Engineering Research, 11 (2), 100078. doi: 10.1016/j.jer.2023.100078

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences