Kinetics of the Diels‒Alder reaction of thiofluorenone with 9,10-dimethylanthracene

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The rate constants of the Diels-Alder reaction of thiofluorenone with 9,10-dimethylanthracene in toluene in the temperature range 15–35°C have been determined. Activation enthalpy and entropy have been calculated. Using NMR spectroscopy, mass spectrometry, and elemental analysis, the structure of thiofluorenone‒9,10-dimethylanthracene adduct has been determined.

作者简介

D. Kornilov

Ufa University of Science and Technology

编辑信件的主要联系方式.
Email: Dima_himik2@mail.ru
ORCID iD: 0000-0002-6696-5820

Department of Chemistry

俄罗斯联邦, ul. Z. Validy, 32, Ufa, 450076

A. Mustafin

Ufa University of Science and Technology

Email: Dima_himik2@mail.ru
ORCID iD: 0000-0002-8342-8787

Department of Chemistry

俄罗斯联邦, ul. Z. Validy, 32, Ufa, 450076

参考

  1. Page P.C.B. Organosulfur Chemistry I. Berlin: Springer, 1999.
  2. Bolton J.R., Chen K.S., Lawrence A.H., Mayo P.D. J. Am. Chem. Soc. 1975, 97, 1832‒1837. doi: 10.1021/ja00840a039
  3. Scaiano J.C., Ingold K.U. J. Am. Chem. Soc. 1976, 98, 4727‒4732. doi: 10.1021/ja00432a006
  4. Alberti A., Bonini B.F., Pedulli G.F. Tetrahedron Lett. 1987, 28, 3737‒3740. doi: 10.1016/S0040–4039(00)96372-X
  5. Toy A.A., Chaffey-Millar H., Davis T.P., Stenzel M.H., Izgorodina E.I., Coote M.L., Barner-Kowollik C. Chem. Commun. 2006, 8, 835‒837. doi: 10.1039/B515561D
  6. Junkers T., Delaittre G., Chapman R., Gunzler F., Chernikova E., Barner-Kowollik C. Macromol. Rapid Commun. 2012, 33, 984‒990. doi: 10.1002/marc.201200128
  7. Zhong F., Hong C.-Y., Pan C.-Y. Macromol. Chem. Phys. 2018, 219, 1800143. doi: 10.1002/macp.201800143
  8. Yu H., Shao J., Chen D., Wang L., Yang W. Polym. Chem. 2020, 11, 3251‒3259. doi: 10.1039/D0PY00322K
  9. Cai Z.-J., Liu C.-X., Gu Q., You S.-L. Angew. Chem. Int. Ed. 2018, 57, 1296‒1299. doi: 10.1002/anie.201711451
  10. Cai Z.-J., Liu C.-X., Wang Q., Gu Q., You S.-L. Nat. Commun. 2019, 10, 4168. doi: 10.1038/s41467–019–12181-x
  11. Lin X., Pu M., Sang X., Li S., Liu X., Wu Y.-D., Feng X. Angew. Chem. Int. Ed. 2022, 61, e202201151. doi: 10.1002/anie.202201151
  12. Russel J.S. Prog. Heterocycl. Chem. 2020, 31, 119‒142. doi: 10.1016/B978–0–12–819962–6.00003–8
  13. Pathania S., Narang R.K., Rawal R.K. Eur. J. Med. Chem. 2019, 180, 486‒508. doi: 10.1016/j.ejmech.2019.07.043
  14. Dembitsky V.M., Gloriozova T.A., Poroikov V.V. J. Pharm. Res. Int. 2017, 18, 1‒19. doi: 10.9734/JPRI/2017/36196
  15. Huisgen R., Fisera L., Giera H., Sustmann R. J. Am. Chem. Soc. 1995, 117, 9671‒9678. doi: 10.1021/ja00143a008
  16. Николаев В.А., Иванов А.В., Шахмин А.А., Schulze B., Родина Л.Л. ЖОрХ. 2011, 47, 1873‒1875. [Nikolaev V.A., Ivanov A.V., Shakhmin, A.A., Schulze B., Rodina L.L. Russ. J. Org. Chem. 2011, 47, 1911‒1913.] doi: 10.1134/S107042801112027X
  17. Rohr U., Schatz J., Sauer J. Eur. J. Org. Chem. 1998, 1998, 2875‒2883. 10.1002/(SICI)1099-0690(199812)1998:12%3C2875::AID-EJOC2875%3E3.0.CO;2-N
  18. Carrillo J.-C., van der Wiel A., Danneels D., Kral O., Boogaard P.J. Regul. Toxicol. Pharmacol. 2019, 106, 316‒333. doi: 10.1016/j.yrtph.2019.05.012
  19. La Voie E.J., Coleman D.T., Rice J.E., Geddie N.G., Hoffmann D. Carcinogenesis. 1985, 6, 1483‒1488. doi: 10.1093/carcin/6.10.1483
  20. Kaden D.A., Hites R.A., Thilly W.G. Cancer Res. 1979, 39, 4152‒4159.
  21. Asada S., Sasaki K., Tanaka N., Takeda K., Hayashi M., Umeda M. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2005, 588, 7‒21. doi: 10.1016/j.mrgentox.2005.07.011
  22. Jellinck P.H., Smith G. Biochem. Pharmacol. 1972, 21, 1603‒1608. doi: 10.1016/0006–2952(72)90310–3
  23. Корнилов Д.А., Киселев В.Д, Аникин О.В., Колесникова А.О., Шулятьев А.А. ЖОрХ. 2019, 55, 17‒21. [Kornilov D.A., Kiselev V.D., Anikin O.V., Kolesnikova A.O., Shulyatiev A.A. Russ. J. Org. Chem. 2019, 55, 7–10.] doi: 10.1134/S1070428019010020
  24. Kornilov D.A. Anikin O.V., Kolesnikova A.O., Bermeshev M.V., Gubaidullin A.T., Kiselev V.D. Int. J. Chem. Kinet. 2019, 51, 405–411. doi: 10.1002/kin.21264
  25. Киселев В.Д., Корнилов Д.А., Аникин О.В., Племенков В.В., Коновалов А.И. ЖОрХ. 2018, 54, 1073–1077. [Kiselev V.D., Kornilov D.A., Anikin O.V., Plemenkov V.V., Konovalov A.I. Russ. J. Org. Chem. 2018, 54, 1080–1084.] doi: 10.1134/S1070428018070187
  26. Kiselev V.D., Kornilov D.A., Anikin O.V., Shulyatiev A.A., Kolesnikova A.O., Konovalov A.I. Int. J. Chem. Kinet. 2018, 50, 651–658. doi: 10.1002/kin.21189
  27. Киселев В.Д., Корнилов Д.А., Аникин О.В., Седов И.А., Коновалов А.И. ЖОрХ. 2017, 53, 1828–1833. [Kiselev V.D., Kornilov D.A., Anikin O.V., Sedov I.A., Konovalov A.I. Russ. J. Org. Chem. 2017, 53, 1864–1869.] doi: 10.1134/S1070428017120144
  28. Kiselev V.D., Kornilov D.A., Konovalov A.I. Int. J. Chem. Kinet. 2017, 49, 562–575. doi: 10.1002/kin.21094
  29. Kiselev V.D., Kornilov D.A., Lekomtseva I.I, Konovalov A.I. Int. J. Chem. Kinet. 2015, 47, 289–301. doi: 10.1002/kin.20908
  30. Kiselev V.D., Konovalov A.I. J. Phys. Org. Chem. 2009, 22, 466–483. doi: 10.1002/poc.1503
  31. Bieri G., Burger F., Heilbronner E., Maier J.P. Helv. Chim. Acta, 1977, 60, 2213–2233. doi: 10.1002/hlca.19770600714
  32. Riddick J.A., Bunger W.B., Sakano T.K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed. New York: Wiley, 1986.
  33. Scheibye S., Shabana R., Lawesson S.-O., Romming C. Tetrahedron. 1982, 38, 993–1001. doi: 10.1016/0040–4020(82)85078–3

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024