Theoretical Study by DFT Method of the Arbuzov Reaction Mechanism Between Ethyl Halogenides and Trimethoxyphosphine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The mechanism of the reaction between ethyl chloride or ethyl bromide with trimethoxyphosphine in a non-polar (ε = 1) and polar medium (methanol, ε = 32.7) was studied within the density functional theory (DFT) using MOLPRO program. It was shown that the reaction occurs in 2 stages: first, a nucleophilic attack of the carbon atom by phosphorus occurs, followed by the interaction of methyl of one of the methoxy groups with the halide. The limiting stage in all cases is the second stage of the reaction, the barrier of which is approximately 1.5 times higher than the barrier of the first. The reaction barriers are lower for the reaction of ethyl bromide, while the stabilization energies of the intermediate complexes and products are almost the same for chloride and bromide. Temperature in general has little effect on the reaction profile, with the exception of entropic destabilization of the initial complex. At the same time, the usage of a polar solvent accelerates the reaction process, lowering the barriers and stabilizing the intermediates, and can be recommended for carrying out the reaction.

Texto integral

Acesso é fechado

Sobre autores

A. Filippova

Lomonosov Moscow State University

Email: osyzgantseva@gmail.com
Rússia, Moscow

M. Syzgantseva

Mendeleev University of Chemical Technology

Email: osyzgantseva@gmail.com
ORCID ID: 0000-0001-8070-104X
Rússia, Moscow

A. Galitsin

Lomonosov Moscow State University

Email: osyzgantseva@gmail.com
Rússia, Moscow

O. Syzgantseva

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: osyzgantseva@gmail.com
ORCID ID: 0000-0002-0270-4621
Rússia, Moscow

Bibliografia

  1. Glueck D.S., Top. Organomet. Chem., 2010, 31, 65–100. doi: 10.1007/978-3-642-12073-2_4
  2. Abakumov G.A., Piskunov A.V., Bochkarev M.N., Dzhemilev U.M., Fedushkin I.L., Egorov M.P., Ananikov V.P., Averin A.D., Beletskaya I.P., Sinyashin O.G., Budnikova Yu.H., Burilov A.R., Gordeev E.G., Muzafarov A.M., Karasik A.A., Trofimov B.A., Cherkasov V.K., Trifonov A.A., Mironov V.F., Andreev M.V., Syroeshkin M.A., Gusarova N.K., Eremin D.B., Dyakonov V.A., Vereshchagin A.N., Jouikov V.V., Anisimov A.A., Arzumanyan A.V., Kononevich Yu.N., Temnikov M.N., Storozhenko P.A., Shcherbakova G.I., Amosova S.V., Potapov V.A., Shur V.B., Burlakov V.V., Bogdanov V.S., Russ. Chem. Rev., 2018, 87, 393. doi: 10.1070/RCR4795
  3. Beletskaya I.P., Kazankova M.A., Russ. J. Org. Chem., 2002, 38, 1391–1430. doi: 10.1023/A:1022685801622
  4. Schwan A.L., Chem. Soc, Rev., 2004, 33, 218–224. doi: 10.1039/B307538A
  5. Selikhov A.N., Plankin G.S., Cherkasov A.V., Shavyrin A.S., Louyriac E., Maron L., Trifonov A.A., Inorg. Chem., 2019, 58, 5325–5334. doi: 10.1021/acs.inorgchem.9b00490
  6. Потапов Р., Химия, изменившая мир, Издательские решения, 2018.
  7. Кузнецова Е.М., Чмиль В.Д., Современные проблемы токсикологии, 2010, 1, 87–95. ISSN 1609-0446
  8. Schwartz D., Berger S., Heinzelmann E., Muschko K., Welzel K., Wohlleben W., Appl. Environ. Microbiol., 2004, 70, 7093–7102. doi: 10.1128/AEM.70.12.7093-7102.2004
  9. Реутов О.А., Курц А.Л., Бутин К.П., Органическая химия в 4-х частях, Москва: Лаборатория знаний, 2022.
  10. Maryanoff B.E., Reitz A.B., Chem. Rev., 1989, 89, 863–927. doi: 10.1021/cr00094a007
  11. Byrne P.A., Gilheany D.G., Chem. Soc. Rev., 2013, 42, 6670–6696. doi: 10.1039/c3cs60105f
  12. Wadsworth W., Org. React., 1977, 25, 73–253. doi: 10.1002/0471264180.or025.025
  13. Horner L., Hoffmann H.M.R., Wippel H.G., Ber., 1958, 91, 61–63. doi: 10.1002/cber.19580910113
  14. Horner L., Hoffmann H.M.R., Wippel H.G., Klahre G., Ber., 1959, 92, 2499–2505. doi: 10.1002/cber.19590921017
  15. Wadsworth W.S., Jr., Emmons W.D., J. Am. Chem. Soc., 1961, 83, 1733. doi: 10.1021/ja01468a042
  16. Wadsworth W.S., Jr., Emmons W.D., Org. Synth., 1973, 5, 547. doi: 10.15227/orgsyn.045.0044
  17. Wadsworth W.S., Jr., Emmons W.D., Org. Synth., 1965, 45, 44. doi: 10.15227/orgsyn.045.0044
  18. Ferao A.E., J. Phys. Chem., 2017, 121, 6517–6522. doi: 10.1021/acs.jpca.7b06262
  19. Michaelis A., Kaehne R., Ber. Dtsch. Chem. Ges., 1898, 31, 1048–1055. doi: 10.1002/cber.189803101190
  20. Toupy T., Monbaliu J.-C.M., Org. Process Res. Dev., 2022, 26, 467–478. doi: 10.1021/acs.oprd.1c00472
  21. Becke A.D., 1988, 38, 3098–3100. doi: 10.1103/physreva.38.3098
  22. Lee C.T., Yang W.T., Parr R.G., Phys. Rev., 1988, 37, 785–789. doi: 10.1103/physrevb.37.785
  23. Vosko S.H., Wilk L., Nusair M., Can. J. Phys., 1980, 58, 1200–1211. doi: 10.1139/P80-159
  24. Klamt A., Schüürmann G., J. Chem. Soc., Perkin Trans. II, 1993, 799–805. doi: 10.1039/P29930000799
  25. Werner H.-J., Knowles P.J., Knizia G., Manby F.R., Schütz M., Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 242–253. doi: 10.1002/wcms.82
  26. Dunning T., J. Chem. Phys., 1989, 90, 1007. doi: 10.1063/1.456153
  27. Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Y., Stefanov K.S., Voevodin V.V., Zhumatiy S.A., Supercomput. Front. Innov., 2019, 6, 4–11. doi: 10.14529/jsfi190201

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Applications of C-P bonded compounds in applications in organic synthesis and catalysis, agrochemistry and household chemistry

Baixar (160KB)
3. Scheme 1. Stages of the Arbuzov reaction of ethyl halides with trimethylphosphite

Baixar (57KB)
4. Fig. 2. Structure of intermediates, transition states and reaction products of phosphonate and methyl halide formation by the Arbuzov reaction: S0 - isolated reagents, S1 - reagent complex, TS1 - first transition state, S2 - intermediate complex, TS2 - second transition state, S3 - reaction products

Baixar (112KB)
5. Fig. 3. C-P and P-O bond lengths in key intermediates and reaction products in the gas phase and methanol

Baixar (216KB)
6. Fig. 4. Transient states, magnitudes and directions of imaginary frequencies of oscillations corresponding to transient states

Baixar (99KB)
7. Fig. 5. Energy profiles of the Arbuzov reaction carried out in the gas phase. Here and in Fig. 6 green colour indicates the reaction pathway for chloroethane, red - for bromoethane

Baixar (305KB)
8. Fig. 6. Energy profiles of the Arbuzov reaction carried out in a polar medium - methanol

Baixar (309KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024