Using New Bioinformatics Strategies at the Design Stage of Genome-edited Plants
- Авторлар: Yakovleva I.V.1, Kamionskaya A.M.1
-
Мекемелер:
- Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Шығарылым: Том 59, № 6 (2023)
- Беттер: 525-537
- Бөлім: Articles
- URL: https://gynecology.orscience.ru/0555-1099/article/view/674582
- DOI: https://doi.org/10.31857/S0555109923060211
- EDN: https://elibrary.ru/CYEAXH
- ID: 674582
Дәйексөз келтіру
Аннотация
The identification of risks associated with novel agricultural products of plant origin obtained via genome editing is an important aspect of genetic engineering. An extensive discussion is currently ongoing worldwide to clarify the similarities and differences between the “old” risks of “classic” GM plants and the “new” ones associated with genome editing, the lack of existing methods for identification and assessment of new risks. We propose here the concept of “safe by design” as applied to protection that is a new interesting tool that introduces good known standards of safety into plant bioengineering. This approach states that design options are identified to minimize or prevent risks and off-target of genome editing at the concept stage. The correlation between experimentally determined and in silico predicted off-target gRNA activity is a major challenge in the CRISPR system application. Today the most studies are focused on efficiency of gRNA design, while we pay attention specifically to the bioinformatics search and study of potential promoters, as the potential risk associates with a possible unplanned change in the transcriptional activity of promoters. We conveyed these strategies in the form of a risk assessment framework for regulation of new genetic technologies.
Негізгі сөздер
Авторлар туралы
I. Yakovleva
Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: iacgea@biengi.ac.ru
Russia, 117312, Moscow
A. Kamionskaya
Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology”of the Russian Academy of Sciences
Email: iacgea@biengi.ac.ru
Russia, 117312, Moscow
Әдебиет тізімі
- Zhu Y. // Biomed Res. Int. 2022. 2022:9978571. https://doi.org/10.1155/2022/9978571
- Eriksson D., Custers R., Edvardsson Björnberg K., Hansson S.O., Purnhagen K., Qaim M. et al. // Trends Biotechnol. 2020. V. 38. P. 231–234. https://doi.org/10.1016/j.tibtech.2019.12.002
- Parrott W. // Physiol Plant. 2018. V. 164. № 4. P. 406-411. https://doi.org/10.1111/ppl.12756
- Yunzhen L., Wenhao Y. // Sci. China Life Sci. 2020. V. 63. № 9. P. 1406–1409. https://doi.org/10.1007/s11427-020-1693-4
- Korotkov E.V., Yakovleva I.V., Kamionskaya A.M. // Appl. Biochem. Microbiol. 2021b). V. 57. № 2. P. 271–279. https://doi.org/10.1134/S000368382102006X
- Konstantakos V., Nentidis A., Krithara A., Paliouras G. // Nucleic Acids Research. 2022. V. 50. № 7. P. 3616–3637. https://doi.org/10.1093/nar/gkac192
- Yan J., Chuai G., Zhou C., Zhu Ch., Yang J., Zhang Ch., Gu F., Xu H., et al. // Brief. Bioinformatics. 2018. V. 19. P. 721–724. https://doi.org/10.1093/bib/bbx001
- Modrzejewski D., Hartung F., Sprink T., Krause D., Kohl Ch., Wilhelm R. // Environ. Evid. 2019. V. 8. P. 27. https://doi.org/10.1186/s13750-019-0171-5
- Modrzejewski D., Hartung F., Lehnert H., Sprink T., Kohl C., Keilwagen J., Wilhelm R. // Front Plant Sci. 2020. V. 11. https://doi.org/10.3389/fpls.2020.574959
- MacLeod A., Spence N. // Emerg. Top Life Sci. 2020. V. 4. № 5. P. 449–452. https://doi.org/10.1042/ETLS20200343
- Hulme Ph.E. // BioScience. 2021. V. 71. № 7. P. 708–721. https://doi.org/10.1093/biosci/biab019
- UN News. https://news.un.org/en/story/2021/03/1087032
- CAST 2022. Council for Agricultural Science and Technology. https://www.cast-science.org
- Lassoued R., Macall D., Hesseln H., Phillips P.W.B., Smyth S.J. // Transgenic Res. 2019. V. 28. P. 247–256. https://doi.org/10.1007/s11248-019-00118-5
- Hua K., Zhang J., Botella J.R., Ma C., Kong F., Liu B., Zhu J.K. // Mol Plant. 2019. V. 12. № 8. P. 1047–1059. https://doi.org/10.1016/j.molp.2019.06.009
- Brende B. In The Global Risks Report 2020 World Economic Forum, Washington, USA, 2019, 15th Ed. Zeneva, Switzerland. P. 9–10.
- Bogner A., Torgersen H. // Policy. Front Plant Sci. 2018. V. 9. P. 1884. https://doi.org/10.3389/fpls.2018.01884
- Hellstrom T. // Technol. Soc. 2009. V. 31. P. 325–331. https://doi.org/10.1016/j.techsoc.2009.06.002
- Dragavtsev V. Academician Dragavtsev’s Protest Against the Presidium of the Russian Academy of Sciences “Give GMO Norms”. https://rossaprimavera.ru/article/04f0c499
- Fagan J., Antoniou M., Robinson Cl. // GMO Myths & Truths: A Citizen’s Guide to the Evidence on the Safety and Efficacy of Genetically Modified Crops and Foods. Earth Open Source. 2020.
- Chuchulina E.O. // Bulletin of Science. 2019. V. 4. № 6. P. 130–134.
- CBD 2012. Guidance on Risk Assessment of Living Modified Organisms. Convention on Biological Diversity. UNEP/CBD/BS/COP-MOP/6/13/Add.1; 2012. https://www.cbd.int/doc/meetings/bs/mop-06/official/mop-06-13-add1-en.pdf
- Guidelines for Assessing the Impact of Genetically Modified Organisms on the Environment and Health; In 2 Parts; 2005. Part 1. Introductory information, Accompanying Texts to Block Diagrams; ISEU: Moscow, Russia. 2005.
- European Commission 2001. Directive 2001/18/EC of The European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Environment of Genetically Modified Organisms. https://eur-lex.europa.eu/legal-content/EN/TXT/H-TML/?uri=CELEX:32001L0018&from=EN.
- GSO 2141:2011. 2011 General Requirements for Genetically Modified Unprocessed Agricultural Products. https://www.gso.org.sa/store/standards/GSO:563263/-GSO%202141:2011.
- Order of the Ministry of Agriculture of the Russian Federation On Approval of the Methodology for the Production of Examinations (studies) of Biological Safety of Genetically Engineered Plants for Growing (release into the environment) on the Territory of the Russian Federation. 2020. http://base.garant.ru/400229383/.
- USDA-Animal and Plant Health Inspection Service 2020. Fed. Regist. 85: 29790. https://www.govinfo.gov/content/pkg/FR-2020-05-18/html/2020-10638.htm.
- Lema M.A. // J. Regul. Sci. 2021. V. 9. № 1. P. 1–15. https://doi.org/10.21423/jrs-v09i1lema
- USDAa 2019. MAFF Guidance for the Handling of Genome Edited Organisms under the Cartagena Act. – https://apps.fas.usda.gov/newgainapi/api/Report/Down-loadReportByFileName?fileName=MAFF%20Guidance%20for%20the%20Handling%20of%20Genome%-20Edited%20Organisms%20under%20the%20Cartagena%20Act_Tokyo_Japan_11-15-2019.
- USDAb 2019. Final MAFF Guidelines for the Handling of Genome Edited Feed and Feed Additives. – https://apps.fas.usda.gov/newgainapi/api/Report/-DownloadReportByFileName?fileName=Final%-20MAFF%20Guidelines%20for%20the%20Handling%20of%20Genome%20Edited%20Feed%20and-%20Feed%20Additives%20_Tokyo_Japan_03-22-2020.
- USDAc 2019. Japan Modifies Handling Procedures for Genome Edited Foods. https://www.fas.usda.gov/data/japan-japan-modifies-handling-procedures-genome-edited-foods.
- Draft Federal Law № 134176-8. 2022. “On Amendments to the Federal Law “On State Regulation in the Sphere of Genetic Engineering Activities”. https://sozd.duma.gov.ru/bill/134176-8#bh_histras.
- Schiemann J., Robienski J., Schleissing S., Spök A., Sprink T., Wilhelm R.A. // Front. Plant Sci. 2020. V. 11. P. 284. https://doi.org/10.3389/fpls.2020.00284
- Globus R., Qimrom U. // Cell Biochem. J. 2018. V. 119. № 2. P. 1291–1298. https://doi.org/10.1002/jcb.26303
- Metje-Sprink J. // Front. Plant Sci. 2019. V. 9. P. 133–141. https://doi.org/10.3389/fpls.2018.01957
- Ahmad N., Rahman M., Mukhtar Z., Zafar Y., Zhang B. // J Cell Physiol. 2020. V. 235. № 2. P. 666–682. https://doi.org/10.1002/jcp.29052
- Sturme M.H.J., van Berg J.P., Bouwman L.M.S., De Schrijver A., de Maagd R.A., Kleter G.A., Battaglia-de Wilde E. // ACS Agric. Sci. Technol. 2022. V. 2. P. 192–201. https://doi.org/10.1021/acsagscitech.1c00270
- Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M. et al. // Mol. Plant Pathol. 2016. V. 17. № 7. P. 1140–1153. https://doi.org/10.1111/mpp.12375
- Arndell T., Sharma N., Langridge P., Baumann U., Watson-Haigh N.S., Whitford R. // BMC Biotechnol. 2019. V. 19. № 1. P. 71. https://doi.org/10.1186/s12896-019-0565-z
- Walton R.T., Christie K.A., Whittaker M.N., Kleinstiver B.P. // Science. 2020. V. 368. P. 290–296. https://doi.org/10.1126/science.aba8853
- Murugan K., Seetharam A.S., Severin A.J., Sashital, D.G. // J. Biol. Chem. 2020. V. 295. № 17. P. 5538–5553. https://doi.org/10.1074/jbc.RA120.012933
- Hong Y., Meng J., He X., Zhang Y., Liu Y., Zhang C., Qi. H., Luan Y. // Phytopathology. 2021. V. 11. № 6. https://doi.org/10.1094/PHYTO-08-20-0360-R
- Malnoy M., Viola R., Junget M.-H., Koo O.J., Kim S., Kim J.S. et al. // Front. Plant Sci. 2016. V. 7. P. 1904. https://doi.org/10.3389/fpls.2016.01904
- Si X., Zhang H., Wang Y., Chen K., Gao C. // Nat. Protoc. 2020. V. 15. P. 338–363. https://doi.org/10.1038/s41596-019-0238-3
- Graham N., Patil G.B., Bubeck D.M., Dobert R.C., Glenn K.C., Gutsche A.T. et al. // Plant Physiol. 2020. V. 183. № 40. P. 1453–1471. https://doi.org/10.1104/pp.19.01194
- Hahn F., Nekrasov V. // Plant Cell Rep. 2019. V. 38. № 4. P. 437–441. https://doi.org/10.1007/s00299-018-2355-9
- Ahmad Sh., Wei X., Sheng Zh., Hu P., Tang Sh. // Brief Funct. Genomics. 2020. V. 19. № 01. P. 26–39. https://doi.org/10.1093/bfgp/elz041
- Faal G.P., Farsi M., Seifi A., Kakhki A.M. // Mol. Biol. Rep. 2020. V. 47. P. 3369–3376. https://doi.org/10.1007/s11033-020-05409-3
- Waterworth W.M., Drury G.E., Bray C.M., Westet Ch.E. // New Phytol. 2011. V. 192. P. 805–822. https://doi.org/10.1111/j.1469-8137.2011.03926.x
- O’Conner S., Li L. // Front. Plant Sci. 2020. V. 11. P. 600117. https://doi.org/10.3389/fpls.2020.600117
- Ellens K.W., Levac D., Pearson C., Savoie A., Strand N., Louter J., Tibelius C. // Transgenic Res. 2019. V. 28 (Suppl. 2). P. 165–168. https://doi.org/10.1007/s11248-019-00153-2
- Xu W., Fu W., Zhu P., Li Z., Wang C., Wang C. et al. // Int. J. Mol. Sci. 2019. V. 20. № 17. P. 4125. https://doi.org/10.3390/ijms20174125
- Weng M.L., Becker C., Hildebrandt J., Neumann M., Rutter M.T., Shaw R.G. et al. // Genetics. 2019. V. 211. № 2. P. 703–714. https://doi.org/10.1534/genetics.118.301721
- Young J., Zastrow-Hayes G., Deschamps S. et al. // Sci. Rep. 2019. V. 9. P. 6729.https://doi.org/10.1038/s41598-019-43141-6
- Tang X., Liu G., Zhou J., Ren Q., You Q., Tian L. et al. // Genome Biol. 2018. V. 19. P. 84.https://doi.org/10.1186/s13059-018-1458-5
- Li J., Manghwar H., Sun L., Wang P., Wang G., Sheng H. et al. // Plant Biotechnol J. 2019. V. 17. № 5. P. 858–868. https://doi.org/10.1111/pbi.13020
- Tsai H., Missirian V., Ngo K.J., Tran R.K., Chan S.R., Sundaresan V., Comai L. // Plant Physiol. 2013. V. 161. № 4. P. 1604–1614. https://doi.org/10.1104/pp.112.213256
- Song H., Park J.-I., Hwang B.-H., Yi H., Kim H., Hur Y. // Agronomy. 2020. V. 10. № 4. P. 602. https://doi.org/10.3390/agronomy10040602
- Korotkov E.V., Suvorova Y.M., Nezhdanova A.V., Gaidukova S.E., Yakovleva I.V., Kamionskaya A.M., Korotkova M.A. // Symmetry. 2021. V. 13. № 6. P. 917–937. https://doi.org/10.3390/sym13060917
- Suvorova Y.M., Kamionskaya A.M., Korotkov E.V. // BMC Bioinform. 2022. V. 22(1). P. 42. https://doi.org/10.1186/s12859-021-03977-0
- Korotkov E.V., Kamionskaya A.M., Suvorova Yu.M. // Biotechnologiya. 2020. V. 36. № 4. P. 15–20. https://doi.org/10.21519/0234-2758-2020-36-4-15-20
- Korotkova M.A., Kamionskya A.M., Korotkov E.V. In: Proceedings of the J. Physics: Conference Series; The VI Int. Conference on Laser&Plasma Researches and Technologies; LaPlas, USA; Moscow, Russia 2020. https://doi.org/10.1088/1742-6596/1686/1/012031
- Salieri B., Barruetabeña L., Rodríguez-Llopis I., Jacobsen N.R., Manier N., Trouiller B. et al. // NanoImpact. 2021. V. 23. https://doi.org/10.1016/j.impact.2021.100335
- EU-SAGE 2022. https://www.eu-sage.eu/genome-search
- Wolt J.D. // Prog. Mol. Biol. Transl. Sci. 2017. V. 149. P. 215–241. https://doi.org/10.1016/bs.pmbts
- Fister A.S., Landherr L., Maximova S.N., Guiltinan M.J. // Front Plant Sci. 2018. V. 9. P. 26. https://doi.org/10.3389/fpls.2018.00268
- Andres J., Blomeier T., Zurbriggen M.D. // Plant Physiol. 2019. V. 179. P. 862–884. https://doi.org/10.1104/pp.18.01362
- Hirsch C.D., Springer N.M. // Biochim. Biophys. Acta Gene Regul. Mech. 2017. V. 1860. P. 157–165. https://doi.org/10.1016/j.bbagrm.2016.05.010
- Philippines 2022. Memorandum Circular No. 8, Series of 2022. https://www.da.gov.ph/wp-content/uploads/2022/06/mc08_s2022_Revised.pdf.
- DBTt 2022. Guidelines for the Safety Assessment of Genome Edited Plants; Government of India, Ministry of Science& Technology, DBTt; 2022. https://dbtindia.gov.in/latest-announcement/guidelines-safety-assessment-genome-edited-plants 2022.
- Proposal for a Regulation on Plants Obtained by Certain new Genomic Techniques and their Food and Feed, and Amending Regulation (EU) 2017/625. https://www.europeansources.info/record/proposal-for-a-regulation-on-plants-obtained-by-certain-new-genomic-techniques-and-their-food-and-feed-and-amending-regulation-eu-2017-625/.
- Yakovleva I.V., Kamionskaya A.M. // Trends Biotechnol. 2022. V. 40. № 6. P. 635–638. https://doi.org/10.1016/j.tibtech.2021.12.004
- OGTR 2021. Department of Health of Australia. Overview – status of organisms modified using gene editing and other new technologies. https://www.ogtr.gov.au/resources/publications/overview-status-orga-nisms-modified-using-gene-editing-and-other-new-technologies.
- Health Canada 2022. Guidance on the Novelty Interpretation of Products of Plant Breeding, 2022. https://www.canada.ca/en/health-canada/services/-food-nutrition/legislation-guidelines/guidance-documents/guidelines-safety-assessment-novel-foods-derived-plants-microorganisms/guidelines-safety-asses-sment-novel-foods-2006.html#a5.
Қосымша файлдар
