Коррозионная активность микроорганизмов, выделенных из обрастаний конструкционных материалов в прибрежной зоне Баренцева моря
- Авторы: Власов Д.Ю.1,2, Брюханов А.Л.3, Няникова Г.Г.4, Зеленская М.С.1, Царовцева И.М.5, Изатулина А.Р.6
-
Учреждения:
- Санкт-Петербургский государственный университет, биологический факультет
- Ботанический институт им. В.Л. Комарова РАН
- Московский государственный университет им. М.В. Ломоносова, биологический факультет
- Санкт-Петербургский государственный технологический институт (технический университет), факультет химической и биотехнологии
- АО Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева
- Санкт-Петербургский государственный университет, Институт наук о Земле
- Выпуск: Том 59, № 4 (2023)
- Страницы: 355-368
- Раздел: Статьи
- URL: https://gynecology.orscience.ru/0555-1099/article/view/674608
- DOI: https://doi.org/10.31857/S0555109923040189
- EDN: https://elibrary.ru/QZTZAQ
- ID: 674608
Цитировать
Аннотация
Исследованы потенциально коррозионно-активные микроорганизмы, выделенные с конструкционных материалов с признаками биообрастаний на побережье Кислой губы (Баренцево море, Россия): сульфатредуцирующие, железоокисляющие и сероокисляющие бактерии. По результатам определения нуклеотидных последовательностей гена 16S рРНК идентифицированы культуры сульфатредуцирующих бактерий (Desulfovibrio sp., Halodesulfovibrio sp.), сероокисляющих бактерий (Dietzia sp.) и железоокисляющих бактерий (Pseudomonas fluorescens, Bacillus sp.). Методами сканирующей электронной микроскопии, энергодисперсионного микроанализа химического состава и рентгенофазового анализа выявлены значительные изменения структуры и химического состава поверхностного слоя образцов стальной арматуры, экспонированных в течение 28 сут в присутствии выделенных культур микроорганизмов, что свидетельствовало об их активном участии в биокоррозионных процессах. Показано, что образование аналогов минералов в продуктах коррозии зависит от штаммов указанных бактерий и, очевидно, связано с особенностями их метаболизма. Наибольшую активность в развитии коррозионных процессов проявили сульфатредуцирующие бактерии, выделенные из литоральной зоны Баренцева моря.
Об авторах
Д. Ю. Власов
Санкт-Петербургский государственный университет, биологический факультет; Ботанический институт им. В.Л. Комарова РАН
Автор, ответственный за переписку.
Email: dmitry.vlasov@mail.ru
Россия, 199034,
Санкт-Петербург; Россия, 197376, Санкт-Петербург
А. Л. Брюханов
Московский государственный университет им. М.В. Ломоносова,биологический факультет
Email: dmitry.vlasov@mail.ru
Россия, 119234, Москва
Г. Г. Няникова
Санкт-Петербургский государственный технологический институт (технический университет),факультет химической и биотехнологии
Email: dmitry.vlasov@mail.ru
Россия, 190013, Санкт-Петербург
М. С. Зеленская
Санкт-Петербургский государственный университет, биологический факультет
Email: dmitry.vlasov@mail.ru
Россия, 199034,
Санкт-Петербург
И. М. Царовцева
АО Всероссийский научно-исследовательский институт гидротехникиим. Б.Е. Веденеева
Email: dmitry.vlasov@mail.ru
Россия, 195220, Санкт-Петербург
А. Р. Изатулина
Санкт-Петербургский государственный университет,Институт наук о Земле
Email: dmitry.vlasov@mail.ru
Россия, 199034, Санкт-Петербург
Список литературы
- Beech I.B., Sunner J. // Biotechnol. 2004. V. 15. № 3. P. 181–186.
- Kip N., van Veen J.A. // ISME J. 2015. V. 9. № 3. P. 542–551.
- Bryukhanov A.L., Vlasov D.Y., Maiorova M.A., Tsarovtseva I.M. // Power Technol. Eng. 2021. V. 54. № 5. P. 609–614.
- Nyanikova G., Bryukhanov A., Vlasov D., Mayorova M., Nurmagomedov M., Akhaev D., Tsarovtseva I. // E3S Web Conf. 2020. V. 215. P. 1–9 (04001).https://doi.org/10.1051/e3sconf/202021504001
- Videla H.A., Herrera L.K. // Int. Microbiol. 2005. V. 8. № 3. P. 169–180.
- Ma Y., Zhang Y., Zhang R., Guan F., Hou B., Duan J. // Biotechnol. 2020. V. 104. № 2. P. 515–525.
- Procópio L. // World J. Microbiol. Biotechnol. 2019. V. 35. № 5. P. 73. https://doi.org/10.1007/s11274-019-2647-4
- Procópio L. // Arch. Microbiol. 2022. V. 204. № 2. P. 138. https://doi.org/10.1007/s00203-022-02755-7
- Amendola R., Acharjee A. // Front. Microbiol. 2022. V. 13. P. 806688. https://doi.org/10.3389/fmicb.2022.806688
- Loto C.A. // J. Adv. Manuf. Technol. 2017. V. 92. P. 4241–4252.
- Bryukhanov A.L., Majorova M.A., Tsarovtseva I.M. // Limnol. Freshw. Biol. 2020. V. 3. № 4. P. 969–970.
- Kim B.H., Lim S.S., Daud W.R., Gadd G.M., Chang I.S. // Bioresour. Technol. 2015. V. 190. P. 395–401.
- Moura V., Ribeiro I., Moriggi P., Capao A., Salles C., Bitati S., Procópio L. // Arch. Microbiol. 2018. V. 200. № 10. P. 1447–1456.
- Enning D., Venzlaff H., Garrelfs J., Dinh H.T., Meyer V., Mayrhofer K. et al. // Environ. Microbiol. 2012. V. 14. № 7. P. 1772–1787.
- Etim I.N., Wei J., Dong J., Xu D., Chen N., Wei X., Su M., Ke W. // Biofouling. 2018. V. 34. № 10. P. 1121–1137.
- Mustin C., Berthelin J., Marion P., de Donato P. // Appl. Environ. Microbiol. 1992. V. 58. № 4. P. 1175–1182.
- López A.I., Marín I., Amils R. // Microbiologia. 1994. V. 10. № 1–2. P. 121–130.
- Inaba Y., Xu S., Vardner J.T., West A.C., Banta S. // Appl. Environ. Microbiol. 2019. V. 85. № 21. e01381–19. https://doi.org/10.1128/AEM.01381-19
- Huang Y., Xu D., Huang L.Y., Lou Y.T., Muhadesi J.B., Qian H.C., Zhou E.Z., Wang B.J, Li X.T., Jiang Z., Liu S.J., Zhang D.W., Jiang C.Y. // NPJ Biofilms Microbiomes. 2021. V. 7. № 1. P. 6.
- Emerson D. // Biofouling. 2018. V. 34. № 9. P. 989–1000.
- Maeda T., Negishi A., Komoto H., Oshima Y., Kamimura K., Sugio T. // J. Biosci. Bioeng. 1999. V. 88. № 3. P. 300–305.
- Makita H. // World J. Microbiol. Biotechnol. 2018. V. 34. № 8. P. 110.
- Ravenschlag K., Sahm K., Knoblauch C., Jørgensen B.B., Amann R. // Appl. Environ. Microbiol. 2000. V. 66. № 8. P. 3592–3602.
- Muyzer G., Stams A.J.M. // Nat. Rev. Microbiol. 2008. V. 6. № 6. P. 441–454.
- Hamilton W.A. // Annu. Rev. Microbiol. 1985. V. 39. P. 195–217.
- Dinh H.T., Kuever J., Mussmann M., Hassel A.W., Stratmann M., Widdel F. // Nature. 2004. V. 427. № 6977. P. 829–832.
- Enning D., Garrelfs J. // Appl. Environ. Microbiol. 2014. V. 80. № 4. P. 1226–1236.
- Videla H.A. // Biofouling. 2000. V. 15. № 1–3. P. 37–47.
- Ziadi I., Alves M.M., Taryba M., El-Bassi L., Hassairi H., Bousselmi L., Montemor M.F., Akrout H. // Bioelectrochemistry. 2020. V. 132. P. 107413.
- Yang S.S., Lin J.Y., Lin Y.T. // J. Microbiol. Immunol. Infect. 1998. V. 31. № 3. P. 151–164.
- Zhang Y., Ma Y., Duan J., Li X., Wang J., Hou B. // Biofouling. 2019. V. 35. № 4. P. 429–442.
- Захарова Ю.Р., Парфенова В.В. // Известия РАН. Серия Биологическая. 2007. № 3. С. 290–295.
- Widdel F., Bak F. The Prokaryotes. 2 Ed. / Eds. A. Balows, H.G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer. N.Y.: Springer-Verlag. 1992. V. 4. P. 3352–3378.
- Брюханов А.Л., Нетрусов А.И., Шестаков А.И., Котова И.Б. Методы исследования анаэробных микроорганизмов. М.: Научная библиотека МГУ, 2015. 178 с.
- Beijerinck M.W. // Archs. Neerrl. Science Series. 1904. V. 29. P. 131–157.
- Issayeva A.U., Pankiewicz R., Otarbekova A.A. // Pol. J. Environ. Stud. 2020. V. 29. № 6. P. 4101–4108.
- Trüper H.G., Schlegel H.G. // Antonie van Leeuwenhoek. 1964. V. 30. P. 225–238.
- Lane D.J. Nucleic Acid Techniques in Bacterial Systematic. / Eds. E. Stackebrandt, M. Goodfello. Chichester: John Wiley & Sons. 1991. P. 115–175.
- Herlemann D.P., Labrenz M., Jurgens K., Bertilsson S., Waniek J.J., Andersson A.F. // ISME J. 2011. V. 5. № 10. P. 1571–1579.
- Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. // BMC Bioinformatics. 2009. V. 10. P. 421.
- Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. // Appl. Environ. Microbiol. 2007. V. 73. № 16. P. 5261–5267.
Дополнительные файлы
