Phylogenetic Composition of Microbial Communities from Fouling of Titanium Plates in the Coastal Zone of the Black and White Seas
- Authors: Bryukhanov A.L.1, Shutova A.S.2, Komarova K.A.2, Semenova T.A.2, Semenov A.A.1, Karpov V.A.2
-
Affiliations:
- Lomonosov Moscow State University
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
- Issue: Vol 60, No 6 (2024)
- Pages: 602-609
- Section: Articles
- URL: https://gynecology.orscience.ru/0555-1099/article/view/681117
- DOI: https://doi.org/10.31857/S0555109924060046
- EDN: https://elibrary.ru/QGSFYS
- ID: 681117
Cite item
Abstract
With high-throughput sequencing of the variable region V3–V4 of the 16S rRNA gene, the study of the full phylogenetic composition of microbial communities developed on the surface of titanium plates exposed in the water column of the coastal zone of the Black and White Seas was carried out. The presence of potentially corrosive microorganisms from various physiological groups, such as sulfate-reducing bacteria, acidophilic iron-oxidizing bacteria and archaea, sulfur-oxidizing and nitrifying bacteria, was shown in these foulings. In the foulings of titanium plates exposed in the Black Sea, the most common microorganisms were uncultivated sulfate-reducing bacteria of the order Desulfotomaculales, which accounted for 8.13% of all 16S rRNA gene sequence reads, as well as acidophilic iron-oxidizing bacteria of the genera Acidiferrobacter (5.47%), Acidithiobacillus (4.52%) and Acidiphilium (2.55%). Acidophilic archaea accounted for up to 7.97% of all reads. In the foulings of titanium plates exposed in the White Sea, the most common were also acidophilic bacteria from the orders Acidiferrobacterales and Acidithiobacillales (7.68%), as well as acidophilic archaea from the order Thermoplasmatales (7.43%). Uncultivated sulfate-reducing bacteria of the order Desulfotomaculales were also represented in relatively high numbers (6.61% of all reads).
Full Text

About the authors
A. L. Bryukhanov
Lomonosov Moscow State University
Author for correspondence.
Email: tashino@mail.ru
Faculty of Biology
Russian Federation, Moscow, 119234A. S. Shutova
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: tashino@mail.ru
Russian Federation, Moscow, 119071
K. A. Komarova
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: tashino@mail.ru
Russian Federation, Москва, 119071
T. A. Semenova
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: tashino@mail.ru
Russian Federation, Москва, 119071
A. A. Semenov
Lomonosov Moscow State University
Email: tashino@mail.ru
Faculty of Biology
Russian Federation, Moscow, 119234V. A. Karpov
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: tashino@mail.ru
Russian Federation, Moscow, 119071
References
- Enning D., Garrelfs J. // Appl. Environ. Microbiol. 2014. V. 80. № 4. P. 1226–1236. https://doi.org/10.1128/AEM.02848-13
- Tsarovtceva I.M., Bryukhanov A.L., Vlasov D.Y., Maiyorova M.A. // Power Technol. Eng. 2023. V. 57. № 2. P. 203–208. https://doi.org/10.1007/s10749-023-01643-4
- Vlasov D.Y., Bryukhanov A.L., Nyanikova G.G., Zelenskaya M.S., Tsarovtseva I.M., Izatulina A.R. // Appl. Biochem. Microbiol. 2023. V. 59. № 4. P. 425–437. https://doi.org/10.1134/S0003683823040166
- Emerson D. // Biofouling. 2018. V. 34. № 9. P. 989–1000. https://doi.org/10.1080/08927014.2018.1526281
- Zhang Y., Griffin A., Edwards M. // Environ. Sci. Technol. 2008. V. 42. № 12. P. 4280–4284. https://doi.org/10.1021/es702483d
- Magoč T., Salzberg S.L. // Bioinformatics. 2011. V. 27. № 21. P. 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
- Edgar R.C. // Bioinformatics. 2010. V. 26. № 19. P. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
- Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. // Appl. Environ. Microbiol. 2007. V. 73. № 16. P. 5261–5267. https://doi.org/10.1128/AEM.00062-07
- Liu H., Meng G, Li W., Gu T., Liu H. // Front. Microbiol. 2019. V. 10. P. 1298. https://doi.org/10.3389/fmicb.2019.01298
- Barton L.L., Hamilton W.A. In: Sulphate-reducing Bacteria: Environmental and Engineered Systems. / Ed. L.L. Barton, W.A. Hamilton. Cambridge: Cambridge University Press, 2007. 533 p.
- Hallberg K.B., Hedrich S., Johnson D.B. // Extremophiles. 2011. V. 15. № 2. P. 271–279. https://doi.org/10.1007/s00792-011-0359-2
- Williams K.P., Kelly D.P. // Int. J. Syst. Evol. Microbiol. 2013. V. 63. № 8. P. 2901–2906. https://doi.org/10.1099/ijs.0.049270-0
- Jones D.S., Albrecht H.L., Dawson K.S., Schaperdoth I., Freeman K.H., Pi Y., Pearson A., Macalady J.L. // ISME J. 2012. V. 6. № 1. P. 158–170. https://doi.org/10.1038/ismej.2011.75
- Gadd G.M. // Geoderma. 2004. V. 122. № 2–4. P. 109–119. https://doi.org/10.1016/j.geoderma.2004.01.002
- Li X., Kappler U., Jiang G., Bond P.L. // Front. Microbiol. 2017. V. 8. P. 683. https://doi.org/10.3389/fmicb.2017.00683
- Magnuson T.S., Swenson M.W., Paszczynski A.J., Deobald L.A., Kerk D., Cummings D.E. // Biometals. 2010. V. 23. № 6. P. 1129–1138. https://doi.org/10.1007/s10534-010-9360-y
- Dopson M., Baker-Austin C., Hind A., Bowman J.P., Bond P.L. // Appl. Environ. Microbiol. 2004. V. 70. № 4. P. 2079–2088. https://doi.org/10.1128/AEM.70.4.2079-2088.2004
- Golyshina O.V. // Appl. Environ. Microbiol. 2011. V. 77. № 15. P. 5071–5078. https://doi.org/10.1128/AEM.00726-11
- Zhang L., Wu J., Wang Y., Wan L., Mao F., Zhang W., Chen X., Zhou H. // Hydrometallurgy. 2014. V. 146. P. 15–23. https://doi.org/10.1016/j.hydromet.2014.02.013
- Golyshina O.V., Yakimov M.M., Lünsdorf H., Ferrer M., Nimtz M., Timmis K.N., et al. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. № 11. P. 2815–2823. https://doi.org/10.1099/ijs.0.009639-0
- Ojumu T.V., Petersen J. // Hydrometallurgy. 2011. V. 106. № 1–2. P. 5–11. https://doi.org/10.1016/j.hydromet.2010.11.007
- Doughari H.J., Ndakidemi P.A., Human I.S., Benade S. // Microbes Environ. 2011. V. 26. № 2. P. 101–112. https://doi.org/10.1264/jsme2.ME10179
- Alain K., Pignet P., Zbinden M., Quillevere M., Duchiron F., Donval J.P., et al. // Int. J. Syst. Evol. Microbiol. 2002. V. 52. № 5. P. 1621–1628. https://doi.org/10.1099/00207713-52-5-1621
- Dahle H., Birkeland N.K. // Int. J. Syst. Evol. Microbiol. 2006. V. 56. № 7. P. 1539–1545. https://doi.org/10.1099/ijs.0.63894-0
- Yu J., Liberton M., Cliften P.F., Head R.D., Jacobs J.M., Smith R.D., et al. // Sci. Rep. 2015. V. 5. P. 8132. https://doi.org/10.1038/srep08132
- Liu X.J., Zhu K.L., Ye Y.Q., Han Z.T., Tan X.Y., Du Z.J., Ye M.Q. // Microb. Genom. 2024. V. 10. № 1. P. 001182. https://doi.org/10.1099/mgen.0.001182
- Simankova M.V., Chernych N.A., Osipov G.A., Zavarzin G.A. // Syst. Appl. Microbiol. 1993. V. 16. № 3. P. 385–389. https://doi.org/10.1016/S0723-2020(11)80270-5
- Hördt A., López M.G., Meier-Kolthoff J.P., Schleuning M., Weinhold L.M., Tindall B.J., et al. // Front. Microbiol. 2020. V. 11. P. 468. https://doi.org/10.3389/fmicb.2020.00468
- Doerfert S.N., Reichlen M., Iyer P., Wang M., Ferry J.G. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. № 5. P. 1064–1069. https://doi.org/10.1099/ijs.0.003772-0
- Shih C.J., Lai M.C. // Can. J. Microbiol. 2010. V. 56. № 4. P. 295–307. https://doi.org/10.1139/W10-008
- Cheng L., Qiu T.L., Yin X.B., Wu X.L., Hu G.Q., Deng Y., Zhang H. // Int. J. Syst. Evol. Microbiol. 2007. V. 57. № 12. P. 2964–2969. https://doi.org/10.1099/ijs.0.65049-0
- Bryukhanov A.L., Vlasov D.Y., Maiorova M.A., Tsarovtseva I.M. // Power Technol. Eng. 2021. V. 54. № 5. P. 609–614. https://doi.org/10.1007/s10749-020-01260-5
Supplementary files
