Decolorization of crystal violet by mixed culture under the influence of Bioelectrochemical stimulation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A significant variation in the relative representation of copies of bacterial genes of dye-decolorizing DyP peroxidases typical for the genus Shewanella and a number of other microorganisms was found in the bottom sediments of freshwater reservoirs. It was found that the specific rate of decolorization of crystal violet in a laboratory bioelectrochemical system by a mixed culture of bottom sediments, which showed the highest representation of DyP genes, depended on the method of electrical stimulation of the external circuit and the concentration of the dye. After an increase in the concentration of more than 20 microns, the maximum speed was achieved in the presence of an ionistor polarly connected to the external electrical circuit of the bioelectrochemical system and amounted to 3.23 ± 0.11 μM/h, while with the opposite polarity connection, a minimum value of 2.07 ± 0.08 μM/h was observed. In the case of an open circuit and a resistor, similar indicators occurred – 2.88 ± 0.09 and 2.67 ± 0.12 μM/h, respectively. When analyzing the decolorization products, a consistent decrease in the maxima of the absorption bands of the dye was noted, indicating its more complete degradation by mixed culture. The results may be of interest for the development of methods to improve the efficiency of bioelectrochemical methods of environmental biotechnology, by electrostimulation of the external circuit.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Samkov

Kuban state university

Хат алмасуға жауапты Автор.
Email: andreysamkov@mail.ru
Ресей, Krasnodar

E. Pankratova

Kuban state university; University of science and technology “Sirius”

Email: andreysamkov@mail.ru
Ресей, Krasnodar; Krasnodar region

M. Kruglova

Kuban state university

Email: andreysamkov@mail.ru
Ресей, Krasnodar

A. Bespalov

Kuban state university

Email: andreysamkov@mail.ru
Ресей, Krasnodar

S. Samkova

Kuban state university

Email: andreysamkov@mail.ru
Ресей, Krasnodar

N. Volchenko

Kuban state university

Email: andreysamkov@mail.ru
Ресей, Krasnodar

A. Khudokormov

Kuban state university

Email: andreysamkov@mail.ru
Ресей, Krasnodar

Әдебиет тізімі

  1. Logan B.E., Regan J.M. // TRENDS Microbiol. 2006. V. 14. № 12. P. 512–518.
  2. Lan J., Wen F., Ren Y., Liu G., Jiang Y., Wang Z., Zhu X. // Environ. Sci. Technol. 2023. V. 16. P. 100278. https://doi.org/10.1016/j.ese.2023.100278
  3. Mohanakrishna G., Al-Raoush R.I., Abu-Reesh I.M. // Biotechnol. Rep. 2020. V. 27. P. e00478. https://doi.org/10.1016/j.btre.2020.e00478
  4. Wang H., Xing L., Zhang H., Gui C., Jin S., Lin H., Li Q., Cheng C. // Chem. Eng. J. 2021. V. 419. P. 129600. https://doi.org/10.1016/j.cej.2021.129600
  5. Kondaveeti S., Govindarajan D., Mohanakrishna G., Thatikayala D., Abu-Reesh I.M., Min B. et al. // Fuel. 2023. V. 331. P. 125632. https://doi.org/10.1016/j.fuel.2022.125632
  6. Cabrera J., Irfan M., Dai Y., Zhang P., Zong Y., Liu X. // Chemosphere. 2021. V. 285. P. 131428. https://doi.org/10.1016/j.chemosphere.2021.131428
  7. Tanikkul P., Pisutpaisal N. // Int. J. Hydrog. Energy. 2018. V. 43. № 1. P. 483–489.
  8. Corbella C., Hartl M., Fernandez-Gatell M., Puigagut J. // Sci. Total Environ. 2019. V. 660. P. 218–226.
  9. Do M.H., Ngo H.H., Guo W., Chang S.W., Nguyen D.D., Sharma P., et al. // Sci. Total Environ. 2021. V. 795. P. 148755. https://doi.org/10.1016/j.scitotenv.2021.148755
  10. Guo F., Liu Y., Liu H. // Sci. Total Environ. 2021. V. 753. P. 142244. https://doi.org/10.1016/j.scitotenv.2020.142244
  11. Askari A., Vahabzadeh F., Mardanpour M.M. // J. Clean. Prod. 2021. V. 294. P. 126349. https://doi.org/10.1016/j.jclepro.2021.126349
  12. Gao Y., Cai T., Yin J., Li H., Liu X., Lu X., et al. // Bioresour. Technol. 2023. V. 376. P. 128835. https://doi.org/10.1016/j.biortech.2023.128835
  13. Karyakin A.A. // Bioelectrochemistry. 2012. V. 88. P. 70–75. https://doi.org/10.1016/j.biortech.2023.128835
  14. Patil. S.A., Gildemyn S., Pant D., Zengler K., Logan B.E., Rabaey K. // Biotechnol. Adv. 2015. V. 33. № 6. P. 736–744.
  15. Kiely P.D., Regan J.M., Logan B.E. // Curr. Opin. Biotechnol. 2011. V. 22. № 3. P. 378–385.
  16. Ножевникова А.Н., Русскова Ю.И., Литти Ю.В., Паршина С.Н., Журавлева Е. А., Никитина А. А. // Микробиология. 2020. Т. 89 № 2. С. 131–151.
  17. Voeikova T.A., Emel’yanova L.K., Novikova L.M., Shakulov R.S., Sidoruk K.V., Smirnov I.A. et al. // Microbiology. 2013. V. 82. № 4. P. 410–414.
  18. Marzocchi U., Palma E., Rossetti S., Aulenta F., Scoma A. // Water Res. 2020. V. 173. P. 115520. https://doi.org/10.1016/j.watres.2020.115520
  19. Obileke K.C., Onyeaka H., Meyer E.L., Nwokolo N. // Electrochem. Commun. V. 125. 2021. P. 107003. https://doi.org/10.1016/j.elecom.2021.107003
  20. Wang X., Wan G., Shi L., Gao X., Zhang X., Li X. et al. // Environ. Sci. Pollut. Res. 2019. V. 26. P. 31449–31462.
  21. Самков А.А., Чугунова Ю.А., Круглова М.Н., Моисеева Е.В., Волченко Н.Н., Худокормов А.А. и др. // Прикл. биохимия и микробиол. 2023. Т. 59. № 2. С. 191–199.
  22. Zhang Y., Ren J., Wang Q., Wang S., Li S., Li H. // Biochem. Eng. J. 2021. V. 168. P. 107930. https://doi.org/10.1016/j.bej.2021.107930
  23. Chen C.-H., Chang C.-F., Ho C.-H., Tsai T.-L., Liu S.-M. // Chemosphere. 2008 V. 7. Р. 1712–1720.
  24. Хмелевцова Л. Е., Сазыкин И. С., Ажогина Т. Н., Сазыкина М. А. // Прикл. биохимия и микробиол. 2020. Т. 56. № 4. С. 327–335.
  25. Hong Y., Guo J., Xu Z., Mo C., Xu M., Sun G. // Appl. Microbiol. Biotechnol. 2007. V. 75. P. 647–654.
  26. Xiao X., Xu C.-C., Wu Y.-M., Cai P.-J., Li W.-W., Du D.-L. et al. // Bioresour. Technol. 2012. V. 110. P. 86–90.
  27. Lizárraga W.C., Mormontoy C.G., Calla H., Castaneda M., Taira M., Garcia R. et al. // Biotechnol. Rep. 2022. V. 33. P. e00704. https://doi.org/10.1016/j.btre.2022.e00704
  28. Cordas C.M., Nguyen G.-S., Valerio G.N., Jonsson M., Sollner K., Aune I.H. et al. // J. Inorg. Biochem. 2022. V. 226. P. 111651. https://doi.org/10.1016/j.jinorgbio.2021.111651
  29. Tucci M., Viggi C.C., Núnez A.E., Schievano A., Rabaey K., Aulenta F. // Chem. Eng. J. 2021. V. 419. P. 130008. https://doi.org/10.1016/j.cej.2021.130008
  30. Фалина И.В., Самков А.А., Волченко Н.Н. // Наука Кубани. 2017. № 2. С. 4–11.
  31. Berezina N.P., Timofeev S.V., Kononenko N.A. // J. Membr. Sci. 2002. V. 209. P. 509–518.
  32. Jadhav G.S., Ghangrekar M.M. // Bioresour. Technol. 2009. V. 100. P. 717–723.
  33. Tian J.-H., Pourcher A.-M., Klingelschmitt F., Le Roux S., Peu P. // J. Microbiol. Methods. 2016. V. 130. P. 148–153.
  34. Yuan J.S., Reed A., Chen F., Stewart C.N.,Jr. // BMC Bioinform. 2006. V. 7. P. 85. https://doi.org/10.1186/1471–2105–7–85
  35. Satta E., Nanni I.M., Contaldo N., Collina M., Poveda J.B., Ramírez A.S. et al. // Molecular and Cellular Probes. 2017. V. 35. P. 1–7.
  36. Heidelberg J.F., Paulsen I.T., Nelson K.E., Gaidos E.J., Nelson W.C., Read T.D. et al. // Nat. Biotechnol. 2002. V. 20. P. 1118–1123.
  37. Yoshida T., Sugano Y. // Biochem. Biophys. Rep. 2023. V. 33. Р. 101401. https://doi.org/10.1016/j.bbrep.2022.101401
  38. Gonzalez-Garcı J., Bonete P., Exposito E., Montiel V., Aldaza A., Torregrosa-Macia R. // J. Mater. Chem. 1999. № 9. P. 419–426.
  39. Guo Y., Zong J., Gao A., Yu N. // Int. J. Electrochem. Sci. 2022. V. 17. Article Number: 220527. https://doi.org/10.20964/2022.05.47
  40. Singh R., Eltis L.D. // Arch. Biochem. Biophys. 2015. V. 574. P. 56–65.
  41. Lončar N., Colpa D.I., Fraaije M.W. // Tetrahedron. 2016. V. 72. P. 7276–7281.
  42. Chhabra M., Mishra S., Sreekrishnan T.R. // J. Biotechnol. 2009. V. 143. P. 69–78.
  43. Parshetti G.K., Parshetti S.G., Telke A.A., Kalyani D.C., Doong R.A., Govindwar S.P. // J. Environ. Sci. (China). 2011. V. 23. № 8. Р. 1384–1393.
  44. Yang J., Zhang Y., Wang S., Li S., Wang Y., Wang S. et al. // J. Biosci. Bioeng. 2020. V. 130. № 4. P. 347–351.
  45. Kalyani D.C., Patil P.S., Jadhav J.P., Govindwar S.P. // Bioresour. Technol. 2008. V. 99. P. 4635–4641.
  46. Li B.-B., Cheng Y.-Y., Fan Y.-Y., Liu D.-F., Fang C.-Y., Wu C. et al. // Sci. Total Environ. 2018. V. 637–638. P. 926–933.
  47. Li C., Luo M., Zhou S., He Ha., Cao J., Luo J., et al. // Int. J. Hydrog. Energy. 2020. V. 45. № 53. P. 29417–29429.
  48. Liu J., Fan L., Yin W., Zhang S., Su X., Lin H., et al. // J. Environ. Manage. 2023. V. 347. Р. 119073. https://doi.org/10.1016/j.jenvman.2023.119073
  49. Yu Y.-Y., Zhang Y., Peng L. // Sci. Total Environ. 2022. V. 838. № 3. Р. 156501. https://doi.org/10.1016/j.scitotenv.2022.156501

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Relative representation of DyP genes in bottom sediment samples of fresh water bodies in Krasnodar Krai.

Жүктеу (18KB)
3. Fig. 2. Dynamics of the potential difference between the electrodes of bioelectrochemical systems during the bleaching of crystal violet by a mixed culture of bottom sediments depending on the electrical stimulation of the external circuit. 1 – supercapacitor of direct polarity connection. 2 – supercapacitor of reverse polarity connection (values ​​are given by module), 3 – 1 kOhm resistor, 4 – open circuit.

Жүктеу (13KB)
4. Fig. 3. Dynamics of D590 of crystal violet solution during its stepwise introduction, depending on electrical stimulation of the external circuit. 1 – supercapacitor of direct polarity connection. 2 – supercapacitor of reverse polarity connection, 3 – 1 kOhm resistor, 4 – open circuit, 5 – control without inoculum, 6 – supercapacitor of direct polarity connection (control with autoclaved inoculum), 7 – supercapacitor of reverse polarity connection (control with autoclaved inoculum).

Жүктеу (17KB)
5. Fig. 4. Dependence of the rate of crystal violet discoloration in the anode chambers of the BES on the electrical stimulation of the external circuit and the concentration of the dye. 1 - supercapacitor of direct polarity connection. 2 - supercapacitor of reverse polarity connection, 3 - 1 kOhm resistor, 4 - open circuit.

Жүктеу (12KB)
6. Рис. 5. Спектры поглощения продуктов разложения кристаллического фиолетового смешанной культурой в зависимости от электрической стимуляции внешней цепи. 1 – ионистор прямой полярности подключения. 2 – ионистор обратной полярности подключения, 3 – резистор 1 кОм, 4 – разомкнутая цепь, 5 – контроль.

Жүктеу (23KB)

© Russian Academy of Sciences, 2024