Self-healing in construction materials science: basic terms and implementation methods
- Autores: Inozemtsev S.S.1, Korolev E.V.2, Inozemtsev A.S.1, Le H.T.1, Matyushin E.V.1
-
Afiliações:
- National Research Moscow State University of Civil Engineering
- Saint Petersburg State University of Architecture and Civil Engineering
- Edição: Nº 3 (2025)
- Páginas: 58-65
- Seção: Статьи
- URL: https://gynecology.orscience.ru/0585-430X/article/view/679242
- DOI: https://doi.org/10.31659/0585-430X-2025-833-3-58-65
- ID: 679242
Citar
Texto integral



Resumo
Statistic data on changes in the number of publications mentioning the studied terms are shown. The analysis of approaches to the formulation of a conceptual framework for describing the processes of the construction materials properties restoring including thermoplastic binders is carried out. The absence of unified terminology in the Russian scientific community has been established. It makes objective evaluating research results in this scientific field difficult. Terms and definitions are proposed to describe self-healing, self-healability, components resource potential, encapsulated modifier, reducing agent and defect neutralization. It is shown that the system of proposed terms has a fundamental basis – thermodynamic interpretation.
Palavras-chave
Texto integral

Sobre autores
S. Inozemtsev
National Research Moscow State University of Civil Engineering
Autor responsável pela correspondência
Email: inozemtsevss@mail.ru
Candidate of Sciences (Engineering)
Rússia, 26, Yaroslavskoe Highway, Moscow, 129337E. Korolev
Saint Petersburg State University of Architecture and Civil Engineering
Email: korolev@nocnt.ru
Doctor of Sciences (Engineering)
Rússia, 4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005A. Inozemtsev
National Research Moscow State University of Civil Engineering
Email: inozemcevss@mgsu.ru
Candidate of Sciences (Engineering)
Rússia, 26, Yaroslavskoe Highway, Moscow, 129337H. Le
National Research Moscow State University of Civil Engineering
Email: letuan1511@yandex.ru
Candidate of Sciences (Engineering)
Rússia, 26, Yaroslavskoe Highway, Moscow, 129337E. Matyushin
National Research Moscow State University of Civil Engineering
Email: matyushin010@gmail.com
Engineer
Rússia, 26, Yaroslavskoe Highway, Moscow, 129337Bibliografia
- Иноземцев С.С., До Т.Ч. Состояние и перспективы развития технологии самовосстанавливающихся дорожных материалов // Вестник МГСУ. 2020. Т. 15. № 10. С. 1407–1424. EDN: NYVEIW. https://doi.org/10.22227/1997-0935.2020.10.1407-1424. Inozemtsev S.S., Do T.Ch. Status and development prospects of self-healing road materials technology. Vestnik of MGSU. 2020. Vol. 15. No. 10, pp. 1407–1424. EDN: NYVEIW. (In Russian). https://doi.org/10.22227/1997-0935.2020.10.1407-1424
- Ghosh S.K. Self-healing materials: fundamentals, design strategies, and applications. Chapter 1. 2008, pp. 1–28. https://doi.org/10.1002/9783527625376.ch1
- Sharma T., Banerjee A., Nanthagopalan P. Probing the abyss: bacteria-based self-healing in cementitious construction materials – a review. Construction and Building Materials. 2024. Vol. 455. 139054. EDN: RKOBVZ. https://doi.org/10.1016/j.conbuildmat.2024.139054
- Chen Ch., Shen T., Yang J., Cao W., Wei J., Li W. Room-temperature intrinsic self-healing materials: a review. Chemical Engineering Journal. 2024. Vol. 498. 155158. EDN: CWVSXS. https://doi.org/10.1016/j.cej.2024.155158
- Целуйко С.С., Красавина Н.П., Семенов Д.А. Регенерация тканей. Благовещенск: Амурская государственная медицинская академия, 2016. 136 с. Tseluiko S.S., Krasavina N.P., Semenov D.A. Regeneratsiya tkaney [Tissue regeneration]. Blagoveshchensk. 2016. 136 p.
- Лесовик В.С., Фомина Е.В. Новая парадигма проектирования строительных композитов для защиты среды обитания человека // Вестник МГСУ. 2019. Т. 14. № 10. С. 1241–1257. EDN: NPNPBT https://doi.org/10.22227/1997-0935.2019.10.1241-1257. Lesovik V.S., Fomina E.V. New paradigm of designing building composites for protecting the human environment. Vestnik MGSU. 2019. Vol. 14. No. 10, pp. 1241–1257. (In Russian). EDN: NPNPBT. https://doi.org/10.22227/1997-0935.2019.10.1241-1257
- Королев Е.В., Беленцов Ю.А. Применение теории информации в решении задач строительного материаловедения // Региональная архитектура и строительство. 2023. № 3 (56). С. 13–28. EDN: NDKOJM. https://doi.org/10.54734/20722958_2023_3_13. Korolev E.V., Belentsov Yu.A. Application of information theory in solving problems of construction materials science. Regional’naya Arkhitektura i Stroitel’stvo. 2023. No. 3 (56), pp. 13–28. (In Russian). EDN: NDKOJM. https://doi.org/10.54734/20722958_2023_3_13
- Иноземцев С.С., Королев Е.В. Структурно-чувствительные свойства самовосстанавливающегося асфальтобетона // Строительные материалы. 2024. № 12. С. 49–56. EDN: YDANRQ. https://doi.org/10.31659/0585-430X-2024-831-12-49-56. Inozemtcev S.S., Korolev E.V. Structural-sensitive properties of self-healing asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2024. No. 12, pp. 49–56. EDN: YDANRQ. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-49-56
- Van der Zwaag S. Self healing materials: an alternative approach to 20 centuries of materials science. Netherlands: Springer. 2007. https://doi.org/10.1007/978-1-4020-6250-6
- Leegwater G., Tabokovic A., Baglieri O., Hammoum F., Baaj H. Terms and definitions on crack-healing and restoration of mechanical properties in bituminous materials. Proceedings of the RILEM International Symposium on Bituminous Materials. 2022. Vol. 27, pp. 47–53. https://doi.org/10.1007/978-3-030-46455-4_6
- Баженов Ю.М., Ерофеев В.Т., Салман А.Д.С.Д., Смирнов В.Ф., Фомичев В.Т. Технология самовосстановления железобетонных конструкций с помощью микроорганизмов // Русский инженер. 2018. № 4 (61). С. 46–48. EDN: YOOLYD. Bazhenov Yu.M., Erofeev V.T., Salman A.D.S.D., Smirnov V.F., Fomichev V.T. Technology of self-healing of reinforced concrete structures using microorganisms. Russkiy Inzhener. 2018. No. 4 (61), pp. 46–48. (In Russian). EDN: YOOLYD
- Яремчук М.В., Уланская А.Е., Присяжнюк А.П. Методические аспекты нового способа самовосстановления искусственного камня // Академическая публицистика. 2022. № 5–1. С. 41–48. EDN: WNGGHQ. Yaremchuk M.V., Ulanskaya A.E., Prisyazhnyuk A.P. Methodological aspects of a new method of self-healing of artificial stone. Akademicheskaya publitsistika. 2022. No. 5–1, pp. 41–48. (In Russian). EDN: WNGGHQ
- Артамонова О.В., Куликова О.Я. Механизмы самовосстановления современных композитов // Химия, физика и механика материалов. 2024. № 2 (41). С. 40–58. EDN: PBXMKV. Artamonova O.V., Kulikova O.Ya. Self-healing mechanisms of modern composites. Khimiya, fizika i mekhanika materialov. 2024. No. 2 (41), pp. 40–58. (In Russian). EDN: PBXMKV
- Ситников Н.Н., Хабибуллина И.А., Мащенко В.И. Самовосстанавливающиеся материалы: обзор механизмов самовосстановления и их применений // Видеонаука. 2018. № 1 (9). С. 1. EDN: YUGMZE. Sitnikov N.N., Khabibullina I.A., Mashchenko V.I. Self-healing materials: a review of self-healing mechanisms and their applications. Videonauka. 2018. No. 1 (9). P. 1. (In Russian). EDN: YUGMZE
- Бадмаев М.А., Квасников М.Ю., Федякова Н.В., Дараселия К.К., Кузовлева Е.А. Самовосстанавливающиеся лакокрасочные покрытия // Успехи в химии и химической технологии. 2018. Т. 32. № 6 (202). С. 17–19. EDN: YPFVJJ. Badmaev M.A., Kvasnikov M.Yu., Fedyakova N.V., Daraselia K.K., Kuzovleva E.A. Self-healing paint and varnish coatings. Uspekhi v Khimii i Khimicheskoy Tekhnologii. 2018. Vol. 32. No. 6 (202), pp. 17–19. (In Russian). EDN: YPFVJJ
- Cordier P., Tournilhac F., Soulie-Ziakovic C., Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008. Vol. 451, pp. 977–980. https://doi.org/10.1038/nature06669
- Chen X.X., Dam M.A., Ono K., Mal A., Shen H.B., Nutt S.R., Sheran K., Wudl F. A thermally Re-mendable cross-linked polymeric material. Science. 2002. Vol. 295, pp. 1698–1702. EDN: DRQYTP. https://doi.org/10.1126/science.1065879
- Amamoto Y., Otsuka H., Takahara A., Matyjaszewski K. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Advanced Materials. 2012. Vol. 24, pp. 3975–3980. https://doi.org/10.1002/adma.201201928
- Taynton P., Ni H., Zhu C., Yu K., Loob S., Jin Y., Qi H.J., Zhang W. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Advanced Materials. 2016. Vol. 28, pp. 2904–2909. https://doi.org/10.1002/adma.201505245
- Jahandideh A., Moini N., Kabiri K., Zohuriaan-Mehr M.J. A green strategy to endow superabsorbents with stretchability and self-healability. Chemical Engineering Journal. 2019. Vol. 370, pp. 274–286. https://doi.org/10.1016/j.cej.2019.03.149
- Zemskov S.V., Jonkers H.M., Vermolen F.J. A mathematical model for bacterial self-healing of cracks in concrete. Journal of Intelligent Material Systems and Structures. 2014. Vol. 25, pp. 4–12. https://doi.org/10.1177/1045389X12437887
- Kim Y.H., Wool R.P. A theory of healing at a polymer-polymer interface. Macromolecules. 1983. Vol. 16. Iss. 7, pp. 1115–1120. https://doi.org/10.1021/MA00241A013
- Wool R.P., O’Connor K. A theory crack healing in polymers. Journal of Applied Physics. 1981. Vol. 52. 5953. https://doi.org/10.1063/1.328526
Arquivos suplementares
