Crystal chemical characteristics of saponite and serpentine: a possible criterion for the direction of the modification process

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The aim of the present study was to develop an algorithm for calculating the main crystallochemical characteristics and their changes accompanying the process of transformation of the crystal structure of mineral substances. As a pilot object, we selected the mineral saponite, which changes its three-layer crystal structure during mechanical grinding, transforming into a two-layer structure characteristic of the mineral serpentine. A possible algorithm for calculating the main physicochemical indicators of the crystal structure of the minerals saponite and serpentine is shown: the filling density of elementary cells, the strength of chemical bonds, the structural density index of the crystal lattice (γ). Thus, an almost twofold increase in the structural density parameter (γsap=0.323; γserp=0.635) indicates the occurrence of the saponiteserpentine structural transformation process. As an additional criterion for the direction of this process, the values of the atomic density (P) in the crystal lattice were calculated: Psap=0.13 and Pserp=0.22. Determining the number of broken bonds ka(t) in the process of saponite transformation into serpentine and comparing it with the ratio 2hsl/D0 (D0 is the particle diameter) made it possible to implement a kinetic description of this process and determine the maximum thickness of the surface (activated) layer (hsl), equal to 20 μm.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Frolova

Northern (Arctic) Federal University named after M.V. Lomonosov

Хат алмасуға жауапты Автор.
Email: m.aizenstadt@narfu.ru

Candidate of Sciences (Chemistry)

Ресей, 17, Northern Dvina Embankment, Arkhangelsk, 163002

E. Korolev

Saint Petersburg State University of Architecture and Civil Engineering

Email: prorector_nr@spbgasu.ru

Doctor of Sciences (Engineering)

Ресей, 4, 2-ya Krasnoarmeyskaya Street, Saint Petersburg, 190005

A. Ayzenshtadt

Northern (Arctic) Federal University named after M.V. Lomonosov

Email: a.isenshtadt@narfu.ru

Doctor of Sciences (Chemistry)

Ресей, 17, Northern Dvina Embankment, Arkhangelsk, 163002

G. Garamov

Northern (Arctic) Federal University named after M.V. Lomonosov

Email: g.garamov@narfu.ru

Graduate Student

Ресей, 17, Northern Dvina Embankment, Arkhangelsk, 163002

Әдебиет тізімі

  1. Boldyrev V.V. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii: monografiya [Fundamental principles of mechanical activation, mechanosynthesis and mechanochemical technologies: monograph. Ed. by E.G. Avvakumov]. Novosibirsk: Publishing house of the Siberian branch of the RAS. 2009. 342 p. EDN: QKCEZH
  2. Strokova V.V., Nelubova V.V., Khmara N.O., Bukovsova A.I., Denisova Yu.V. Expanded perlite sand as an effective binder additive. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 61–66. (In Russian). EDN: WIXFQY. https://doi.org/10.31659/0585-430X-2022-803-6-61-66
  3. Glezer A.M. Amorphous and nanocrystalline structures: similarities, differences, mutual transitions. Rossiiskii Khimicheskii Zhurnal. 2002. Vol. 46. No. 5, pp. 57–63. (In Russian). https://www.chem.msu.ru/rus/jvho/2002-5/57.pdf
  4. Frolova M.A., Korolev E.V. Energy model of surface activation of mineral components of building composite materials. Stroitel’nye Materialy [Construction Materials]. 2025. No. 1–2, pp. 72–78. (In Russian). https://doi.org/10.31659/0585-430X-2025-832-1-2-72-78
  5. Lyubomirsky N.V., Bakhtin A.S., Bakhtina T.A., Nikolaenko V.V., Bilenko G.R. Metallurgical waste as a raw material reserve for achieving carbon neutrality of the construction industry. Part 1. Ability of metallurgical waste to bind CO2. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 80–94. (In Russian). EDN: FKYXHV. https://doi.org/10.31659/0585-430X-2023-819-11-80-94
  6. Aizenshtadt A.M., Korolev E.V., Malygina M.A., Drozdyuk T.A., Frolov M.A. Structural modification of fine powders of overburden rocks of saponite-containing bentonite clay. Fizika i khimiya obrabotki materialov. 2023. No. 1, pp. 56–63. (In Russian). EDN: BGBWRA. https://doi.org/10.30791/0015-3214-2023-1-56-63
  7. Ayzenshtadt A.M., Frolova M.A., Danilov V.E., Drozdyuk T.A., Malygina M.A. Modification transformations of saponite-containing material during mechanical grinding. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 54–59. (In Russian). EDN: QWPMZV. https://doi.org/10.31659/0585-430X-2023-815-7-54-59
  8. Aizenshtadt A.M., Strokova V.V., Nelyubova V.V., Malygina M.A., Frolova M.A. Physicochemical transformations of saponite-containing material during its activation by grinding. Fizika i Khimiya Obrabotki Materialov. 2024. No. 1, pp. 53–64. (In Russian). EDN: LSOZOU. https://doi.org/10.30791/0015-3214-2024-1-53-64
  9. Betekhtin A.G. Kurs mineralogii [Course of mineralogy]. Moscow: State publishing house of geological literature.1951. 543 p.
  10. Feklichev V.G. Diagnosticheskie konstanty mineralov: spravochnik [Diagnostic constants of minerals: reference book]. Moscow: Nedra. 1989. 228 p.
  11. Akai J. T-T-T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Sixteenth Symposium on Antarctic Meteorites. Proceedings of the NIPR Symposium. No. 5. June 5–7, 1991. National Institute of Polar Research, Tokyo. Published by the National Institute of Polar Research. 1992. 120 p.
  12. Bulakh A.G., Zolotarev A.A., Krivovichev V.G. Struktura, izomorfizm, formuly, klassifikatsiya mineralov [Structure, isomorphism, formulas, classification of minerals]. St. Petersburg: St. Petersburg State University Publishing House. 2014. 132 p. EDN: VETOTV
  13. Chibisov A.N., Chibisova M.A. Influence of impurity atoms on the atomic and electronic structure of nanoporous silicates. Vestnik of the Pacific National University. 2012. No. 3 (26), pp. 41–48. (In Russian). EDN: PEVIGZ
  14. Giese R.F., van Oss C.J. Colloid and surface properties of clays and related minerals. Ed. A.T. Hubbart. Boca Raton: CRC Press. 2002. 354 p. https://doi.org/10.1201/9780203910658
  15. Ochur-ool A.P., Mandyrykchy H.B., Zyryanova V.N. Crystal structure of serpentine group minerals (chrysotile asbestos). Vestnik of Tuva State University. No. 3. Technical, Physical and Mathematical Sciences. 2021. No. 4 (86), pp. 14–22. (In Russian). EDN: OVQHTJ. https://doi.org/10.24411/2221-0458-2021-86-14-22
  16. Panasyan L.L., Posukhova T.V., Cherepetskaya E.B., Jingyi Zhang. Mineralogical, petrophysical and acoustic characteristics of serpentines – indicators of paleodynamic conditions of their formation (using the Main Ural Fault zone as an example). Geology and Geophysics. 2014. Vol. 55. No. 12, pp. 1828–1840. EDN: TEAOWP
  17. Liskova L.V., Kovalchuk O.E. Structural features of serpentine from kimberlites of Yakutia. Spektroskopiya, Rentgenografiya i Kristallokhimiya. 1997, pp. 73–74. (In Russian).
  18. Lyutoev V.P., Makeev A.B., Simakova Yu.S., Terekhov E.N. Serpentinites of the mélange zone in the north of the Rai-Iz massif, containing jewelry garnet (andradite-demantoid). Vestnik of Geosciences. 2024. No. 7 (355), pp. 24–31. (In Russian). EDN: MKHPWW. https://doi.org/10.19110/geov.2024.7.3
  19. Zuev V.V., Potseluev L.N., Goncharov Yu.D. Kristalloenergetika kak osnova ocenki magnezialnyx svojstv tverdotelnyh materialov (vklyuchaya magnezialnye cementy) [Crystal energy as a basis for magnesian properties of solid-state materials assessing (including magnesian cements)]. St. Petersburg: ALFAPOL LLC, 2006. 119 p.
  20. Kai Gond, Kengran Yand, Claire E. White. Density functional modeling of the binding energies between aluminosilicate oligomers and different metal cations. Sec. Structural Materials. 2023. Vol. 10. https://doi.org/10.3389/fmats.2023.1089216
  21. Huey J. Neorganicheskaya khimiya. Stroenie veshchestva i reaktsionnaya sposobnost’ [Inorganic Chemistry. Structure of Matter and Reactivity. Translated from English. edited by Stepin V.D., Lidina R.A.] Moscow: Chemistry. 1987. 696 p.
  22. Chibisov A.N., Chibisova M.A. Influence of impurity atoms on the atomic and electronic structure of nanoporous silicates. Vestnik of the Pacific National University. 2012. No. 3 (26), pp. 41–48. (In Russian). EDN: PEVIGZ
  23. Bogdanov O.S., Zuev V.V. On the crystal-chemical assessment of magnetic, electrical and gravitational properties of minerals. Obogashchenie Rud. 1991. No. 6, pp. 12–16. (In Russian).
  24. Termodinamicheskie svoistva individual’nykh veshchestv: spravochnoe izdanie v 4-kh tomakh [Thermodynamic properties of individual substances: reference publication in 4 volumes / Edited by V.P. Glushko]. Moscow: Nauka, 1979. 341 p.
  25. Korepanov M.A. Surface tension of liquid aluminum oxide. Khimicheskaya Fizika i Mezoskopiya. 2013. Vol. 15. No. 1, pp. 83–90. (In Russian). EDN: PYTNKN
  26. Voronkov M.G., Yuzhelevsky Yu.A., Mileshkevich V.P. Siloxane bond and its influence on the structure and physical properties of organosilicon compounds. Uspekhi Khimii. 1975. Vol. 44. Iss. 4, pp. 715–793. (In Russian).
  27. Aakash Gupta, Debasis Jana. Modified born-lande equation to calculate lattice energy in a theoretical approach. Theoretical and Computational Chemistry. 2021. Version 1. https://doi.org/10.33774/chemrxiv-2021-z2n68

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Crystal structure of saponite (a) and serpentine (b) [6, 9]

Жүктеу (125KB)
3. Fig. 2. Dependencies 2hsl/D0=f(t) and ϑ2h/D=f(t)

Жүктеу (60KB)

© ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2025