Response of spring barley to UV and γ-irradiation
- Authors: Guseva O.A.1, Tsygvintsev P.N.1, Pavlov A.N.1
-
Affiliations:
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”
- Issue: Vol 64, No 6 (2024)
- Pages: 633-644
- Section: НЕИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ
- URL: https://gynecology.orscience.ru/0869-8031/article/view/681190
- DOI: https://doi.org/10.31857/S0869803124060075
- EDN: https://elibrary.ru/NDGAVT
- ID: 681190
Cite item
Abstract
In two vegetation experiments on barley plants, the effect of separate and combined UV-B, UV-A and γ-irradiation in different doses was studied for the varieties “Zazersky 85” and “Vladimir. The plants were assessed for flavonoid content, photosynthetic pigments, morphology parameters and yield. The daily dose of chronic UV-B-irradiation was 9 kJ/m2, chronic UV-A – from 7.2 to 72 kJ/m2, single γ-irradiation 2 and 4 Gy. It has been shown that spring barley varieties “Zazersky 85” and “Vladimir” differ in their sensitivity to chronic UV-B irradiation. When predicting the negative impact of UV-B radiation on plants, it is necessary to take into account the existing level of UVA radiation, since their effect is not additive. Stimulation of biomass growth under chronic UV irradiation may be accompanied by suppression of plant productivity. The response of barley plants to γ-irradiation can be significantly dependent on the level of UV-(A+B) radiation. In general, the dose-dependent effect of chronic UV and γ-irradiation can be considered as a transition from austress to distress and its irreversible disruption. The data from this study may be relevant for programs to develop new varieties of spring barley that are resistant to elevated levels of solar UV radiation.
Keywords
Full Text

About the authors
Oksana A. Guseva
Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: gusevaoks65@yandex.ru
ORCID iD: 0000-0002-8814-6324
Russian Federation, Obninsk
Pavel N. Tsygvintsev
Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”
Email: paul-gomel@mail.ru
ORCID iD: 0000-0003-0214-7447
Russian Federation, Obninsk
Alexander N. Pavlov
Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”
Email: 49434@mail.ru
ORCID iD: 0000-0001-7714-2419
Russian Federation, Obninsk
References
- Caldwell M.M. Solar UV irradiation and the growth and development of higher plants. Photophysiology. 1971;6:131–177.
- Небывалая убыль стратосферного озона в Арктике весной 2011 года. World Meteorology Organization. Press release. ВМО-№ 912. Женева. 5 апреля 2011. [Nebyvalaya ubyl’ stratosfernogo ozona v Arktike vesnoj 2011 goda. World Meteorology Organization. Press release. VMO-№ 912. Zheneva. 5 aprelya 2011. (In Russ.)]
- Zuev V.V., Zueva N.E., Korotkova E.M. The comparative analysis of observational series of total ozone content and UV-B radiation in boreal forest zones. Atmospheric and Oceanic Optics. 2016;29(1):67–72. https://doi.org/10.1134/s1024856016010152 .
- Jansen M., Gaba V., Greenberg B. Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci. 1998;3:131–135. https://doi.org/10.1016/s1360-1385(98)01215-1 .
- Kim D.Y., Hong M.J., Park C.S., Seo Y.W. The effects of chronic radiation of gamma ray on protein expression and oxidative stress in Brachypodium distachyon. Int. J. Radiat. Biol. 2015;91(5):407–19. http://dx.doi.org/10.3109/09553002.2015.1012307
- Wi S.G., Chung B.Y., Kim J-H. et al. Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradiation. J. Plant. Biol. 2005;48:195–200. https://doi.org/10.1007/bf03030408.
- Kim J.-H., Lee M.H., Moon Y.R. et al. Characterization of metabolic disturbances closely linked to the delayed senescence of Arabidopsis leaves after γ irradiation. Environ. Exp. Bot. 2009;67(2):363–371. https://doi.org/10.1016/j.envexpbot.2009.07.001
- Abdel-Hady M., Okasha E., Soliman S., Talaat M. Effect of gamma radiation and gibberellic acid on germination and alkaloid production in Atropa belladonna L. Biochem. Biophys. Res. Commun. 2008;2(3):401–405.
- Borzouei A., Kafi M., Khazaei H. et al. Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak. J. Bot. 2010; 42(4):2281–2290.
- Shah T.M., Mirza J.I., Haq M.A., Atta B.M. Induced genetic variability in chickpea (Cicer arietinum L.) II. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Pak. J. Bot. 2008;40(2):605–613.
- Гринберг М.А., Громова Е.Н., Гудков С.В., Воденеев В.А. Влияние хронического облучения в малых дозах на электрогенез и фотосинтетическую активность проростков гороха. Экол. биофизика. 2018;3(3):680–685. [Grinberg M.A., Gromova E.N., Gudkov S.V., Vodeneev V.A. Vliyanie hronicheskogo oblucheniya v malyh dozah na elektrogenez i fotosinteticheskuyu aktivnost’ prorostkov goroha. Ekologicheskaya biofizika. 2018; 3(3): 680–685. (In Russ).]
- Vanhoudt N., Horemans N., Wannijn J. et al. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. J. Environ. Radioact. 2013;129:1–6. https://doi.org/10.1016/j.jenvrad.2013.11.011.
- Biermans G., Horemans N., Vanhoudt N. et al. Biological effects of α-radiation exposure by 241Am in Arabidopsis thaliana seedlings are determined both by dose rate and 241Am distribution. J. Environ. Radioact. 2015;149:51–63. https://doi.org/10.1016/j.jenvrad.2015.07.007 .
- Van Hoeck A., Horemans N., Nauts R. et al. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Science. 2017;257:84–95. https://doi.org/10.1016/j.plantsci.2017.01.010 .
- Lichtenhaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society of Transaction. 1983;11:591–592. https://doi.org/10.1042/bst0110591.
- Tevini M., Iwanzik W., Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta. 1981;153(4):388–394. https://doi.org/10.1007/bf00384258 .
- Caldwell M.M., Ballare C.L., Bornman J.F. et al. Terrestrial ecosystems increased solar radiation and interactions with other climatic factors. Photochem. Photobiol. Sci. 2003; 2: 29–38. https://doi.org/10.1039/b211159b
- Храмова Е.П., Тарасов О.В., Крылова Е.И. Влияние радиационного фактора на изменчивость биохимических показателей на примере растений Pentaphylloides Fruticosa (L.) O. Schwarz. Растительный мир Азиатской России. 2009;4(2):72–78. [Hramova E.P., Tarasov O.V., Krylova E.I. Vliyanie radiacionnogo faktora na izmenchivost’ biohimicheskih pokazatelej na primere rastenij Pentaphylloides Fruticosa (L.) O. Schwarz. Rastitel’nyj mir Aziatskoj Rossii. 2009; 4(2): 72–78. (In Russ.)]
- Карпова Е. А., Фершалова Т. Д. Динамика содержания пигментов в листьях Begonia grandis Dryander subsp. grandis при интродукции в Западной Сибири (г. Новосибирск). Вестн. Томск. гос. ун-та. Биология. 2016;33(1):140–158. [Karpova E.A., Fershalova TD. Dynamics of leaf pigments content of Begonia grandis Dryander subsp. grandis introduced in West Siberia (Novosibirsk). Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 2016;(33(1)):140–158. (In Russ.)] http://dx.doi.org/10.17223/19988591/33/9].
- Duarte G.T., Volkova P.Y., Geras’kin S.A. The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from chernobyl affected zone. Environ. Poll. 2019;250:618–626. https://doi.org/10.1016/j. envpol.2019.04.064.
- Джафаров Э.С., Годжаева Г.А., Джафарлы А.К., Оруджева Дж.Р. Изменение содержания отдельных элементов антиоксидантной системы защиты Alhagi Pseudalhagi (Bieb.) в условиях хронического гамма-облучения. Вопр. радиац. безопасности. 2013;71(3):12–24. [Dzhafarov E.S., Godzhaeva G.A., Dzhafarly A.K., Orudzheva Dzh.R. Izmenenie soderzhaniya otdel’nyh elementov antioksidantnoj sistemy zashchity Alhagi Pseudalhagi (Bieb.) v usloviyah hronicheskogo gamma-oblucheniya. Voprosy radiacionnoj bezopasnosti. 2013;71(3):12–24. (In Russ.)]
- Hideg É., Jansen M.A., Strid Å. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 2013;18:107–115. https://doi.org/10.1016/j.tplants.2012.09.003 .
- Jiao J., Gai Q.Y., Yao L.P. et al. Ultraviolet radiation for flavonoid augmentation in Isatis tinctoria L. hairy root cultures mediated by oxidative stress and biosynthetic gene expression. Industrial Crops and Products. 2018;118:347–54. http://dx.doi.org/10.1016/j.indcrop.2018.03.046
- Geng X., Zhang Y., Wang L., Yang X. Pretreatment with high-dose gamma irradiation on seeds enhances the tolerance of sweet osmanthus seedlings to salinity stress. Forests. 2019;10(5):406. https://doi.org/10.3390/f10050406.
- Hussein H.A.A. Influence of radio-grain priming on growth, antioxidant capacity, and yield of barley plants. Biotechnol. Rep. [Internet]. 2022 Jun;34:e00724. http://dx.doi.org/10.1016/j.btre.2022.e00724
- Hanafy R.S., Akladious S.A. Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants. J. Gen. Eng. Biotechnol. 2018;16(2):683–692. https://doi.org/10.1016/j.jgeb.2018.02.012.
Supplementary files
