Genotoxic effects of combined effect of pulsed magnetic field and ionizing radiation in the meristem of onion seed sprouts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the present work, the sequential combined action of the pulsed magnetic field (PMF) (carrier frequency 1.8 MHz, modulated by pulses with a repetition rate of 28 kHz, magnetic field induction at the location of biological objects 75 mT per pulse with a duration of action on seeds of 60 s) and the amplitude of g-radiation at a dose of 3 g on the meristems of cells of the original onion. The systems of cells with chromosomal aberrations in the ana-telophase, types of aberrations, mechanisms of cells with micronuclei and the mitotic index were analyzed. Gamma radiation led to an increase in the frequency of cells with chromosomal aberrations by 12 times, the frequency of cells with micronuclei by 64 times. PMF led to an increase in the frequency of cells with chromosomal aberrations by 2 times, and cells with micronuclei by 3 times. The combined action of limiting factors was characterized by antagonistic interactions. Several hypotheses have been proposed to explain the effects of the combined action of IMF and gamma irradiation: IMF is guaranteed, leading to increased efficiency of DNA repair; IMF increases the level of apoptosis of lower cells and the elimination of radiation-induced aberrant cells; IMF leads to a more pronounced delay in the cell cycle and thus increases the time for repair of radiation-induced DNA damage.

Full Text

Restricted Access

About the authors

Albina E. Aldibekova

Ural Scientific and Practical Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia

Author for correspondence.
Email: albinaaes@gmail.com
ORCID iD: 0000-0003-0943-3366
Russian Federation, 68‒A, st. Vorovskogo, Chelyabinsk, 454141

Elena V. Styazhkina

Ural Scientific and Practical Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia; Chelyabinsk State University

Email: yelena-st@mail.ru
ORCID iD: 0000-0002-5481-5657
Russian Federation, 68‒A, st. Vorovskogo, Chelyabinsk, 454141; 129, st. Brothers Kashirinykh, Chelyabinsk, 454021

Galina A. Tryapitsina

Ural Scientific and Practical Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia; Chelyabinsk State University

Email: tga28@mail.ru
ORCID iD: 0000-0003-3186-1324
Russian Federation, 68‒A, st. Vorovskogo, Chelyabinsk, 454141; 129, st. Brothers Kashirinykh, Chelyabinsk, 454021

Evgeniy A. Pryakhin

Ural Scientific and Practical Center for Radiation Medicine of the Federal Medical and Biological Agency of Russia

Email: pryakhin@yandex.ru
ORCID iD: 0000-0002-5990-9118
Russian Federation, 68‒A, st. Vorovskogo, Chelyabinsk, 454141

References

  1. Sturman V.I. Power Frequency Electromagnetic Fields in the Urban Environment as the Object of Ecological-Geographical Research. Geogr. Nat. Resour. 2019;40(1):15–21. https://doi.org/10.1134/S1875372819010037
  2. Алексахин Р.М., Булдаков Л.А., Губанов В.А. и др. Крупные радиационные аварии: последствия и защитные меры / Под ред. Ильина Л.А., Губанова В.А. М.: ИздАТ, 2001. 752 с. [Alexakhin R. M., Buldakov L.A., Gubanov V.A. et al. Krupnye radiacionnye avarii: posledstvija i zashhitnye mery / Рod red. Il’ina L.A., Gubanova V.A. M.: IzdAT; 2001. 752 p. (In Russ.)]
  3. Livshiz Y., Gafri O. Technology and equipment for industrial use of pulse magnetic fields. Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. 1999;1:475–478.
  4. Shaburova N., Krymsky V., Moghaddam A.O. Theory and practice of using pulsed electromagnetic processing of metal melts. Materials. 2022;15(3):1235. https://doi.org/10.3390/ma15031235
  5. Löschinger M., Thumm S., Hämmerle H., Rodemann H.P. Stimulation of protein kinase A activity and induced terminal differentiation of human skin fibroblasts in culture by low-frequency electromagnetic fields. Toxicol Lett. 1998;96–97:369–76. https://doi.org/10.1016/s0378-4274(98)00095-2
  6. Goodman E.M., Sharpe P.T., Greenebaum B., Marron M.T. Pulsed magnetic fields alter the cell surface. FEBS Lett. 1986;199(2):275–278. https://doi.org/10.1016/0014-5793(86)80494-x
  7. Yalçın S., Erdem G. Biological effects of electromagnetic fields. Afr. J. Biotechnol. 2012;11(17):3933–3941. https://doi.org/10.5897/AJB11.3308
  8. Belyavskaya N.A. Biological effects due to weak magnetic field on plants. Adv. Space Res. 2004;34(7):1566–1574. https://doi.org/10.1016/j.asr.2004.01.021
  9. Tkalec M., Malarić K., Pavlica M., Pevalek-Kozlina B., Vidakovic-Cifrek Z. Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutat. Res. 2009;672(2):76–81. https://doi.org/10.1016/j.mrgentox.2008.09.022
  10. Jouni F. J., Abdolmaleki P., Ghanati, F. Oxidative stress in broad bean (Vicia faba L.) induced by static magnetic field under natural radioactivity. Mutat. Res. 2012;741:116–121. https://doi.org/10.1016/j.mrgentox.2011.11.003
  11. Luigi C., Tiziano P. Mechanisms of Action And Effects of Pulsed Electromagnetic Fields (PEMF) in Medicine. J. Med. Res. Surg. 2020;1(6):1–4. https://doi.org/10.52916/jmrs204033
  12. Strauch B., Herman C., Dabb R., Ignarro L.J., Pilla A.A. Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthet. Surg. J. 2009;29(2):135–43. https://doi.org/10.1016/j.asj.2009.02.001
  13. Wang T, Xie W, Ye W, He C. Effects of electromagnetic fields on osteoarthritis. Biomed. Pharmacother. 2019;118:109282. https://doi.org/10.1016/j.biopha.2019.109282
  14. Cook C.M., Thomas A.W., Keenliside L, Prato F.S. Resting EEG effects during exposure to a pulsed ELF magnetic field. Bioelectromagnetics. 2005;26(5):367–76. https://doi.org/10.1002/bem.20113
  15. Mansourian M., Shanei A. Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies. Biomed. Res. Int. 2021;2021:6647497. https://doi.org/10.1155/2021/6647497
  16. Максимов А.В., Кирьянова В.В. Магнитная терапия в клинической практике. Физиотерапия, бальнеология и реабилитация. 2019;18(6):412–426. [Maksimov A.V., Kiryanova V.V. Magnetotherapy in clinical practice. Russian Journal of the Physial Therapy, Balneotherapy and Rehabilitation. 2019; 18(6):412–426. (In Russ.)] https://doi.org/10.17816/1681-3456-2019-18-6-412-426
  17. Manti L., D’Arco A. Cooperative biological effects between ionizing radiation and other physical and chemical agents. Mutat. Res. 2010;704(1–3):115–22. https://doi.org/ 10.1016/j.mrrev.2010.03.005
  18. Петин В.Г., Дергачева И.П., Жураковская Г.П. Комбинированное биологическое действие ионизирующих излучений и других вредных факторов окружающей среды (научный обзор). Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2001;12:117–134. [Petin V.G., Dergacheva I.P., Zhurakovskaya G.P. Combined biological effect of ionizing radiation and other hazardous environmental factors (scientific review). Radiation and risk. 2001;12:117–134. (In Russ.)]
  19. Галузо С.Ю., Козлов В.И. Импульсное магнитное поле: Лабораторный практикум по общей физике (электричество и магнетизм). М.: МГУ, 2006. 10 c. [Galuzo S.Ju., Kozlov V.I. Impul’snoe magnitnoe pole: Laboratornyj praktikum po obshhej fizike (jelektrichestvo i magnetizm). M.: MGU, 2006. 10 p. (In Russ.)]
  20. Fiskesjo G. The Allium test as a standard in environmental monitoring. Hereditas. 1985;102:99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x
  21. Grant W.F. Chromosome aberration assays in Allium. A report of the US Environmental Protection Agency GeneTox program. Mutat. Res. 1982;99:273–291. https://doi.org/10.1016/0165-1110(82)90046-x
  22. Удалова А.А., Пяткова С.В., Гераськин С.А., Киселёв С.М., Ахромеев С.В. Оценка цито- и генотоксичности поземных вод, отобранных на промплощадке Дальневосточного центра по обращению с радиоактивными отходами. Радиац. биология. Радиоэкология. 2016;56(2):208–219. [Oudalova A.A., Pyatkova S.V., Geras’kin S.A., Kiselev S.M., Akhromeev S.V. Assessment of Cyto and Genotoxicity of Underground Waters from the Far Eastern Center on Radioactive Waste Treatment Site. Radiation Biology. Radioecology. 2016;56(2):208–219. (In Russ.)]
  23. Leme D.M., Marin-Morales M.A. Allium cepa test in environmental monitoring: A review on its application. Mutat. Res. 2009;682:71–81. https://doi.org/10.1016/j.mrrev.2009.06.002
  24. Kumar A., Kaur S., Chandel S. Singh H.P. et al. Comparative cyto- and genotoxicity of 900 MHz and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa. Ecotoxicol. Environ. Safety. 2020;188:109786. https://doi.org/10.1016/j.ecoenv.2019.109786
  25. Копанев В.А. О расчете ожидаемого аддитивного эффекта комбинированного или комплексного действия ядов. Гигиена и санитария. 1980; 6:59–61. [Kopanev V.A. O raschete ozhidaemogo additivnogo jeffekta kombinirovannogo ili kompleksnogo dejstvija jadov. Gigiena i sanitarija. 1980;6:59–61. (In Russ.)]
  26. Berenbaum M.C. The Expected Effect of a Combination of Agents: the General Solution. J. Theor. Biol. 1985;114(3):413–31. https://doi.org/10.1016/s0022-5193(85)80176-4
  27. Гераськин С.А., Дикарев В.Г., Дикарева Н.С., Удалова А.А. Влияние раздельного действия ионизирующего излучения и солей тяжелых металлов на частоту хромосомных аберраций в листовой меристеме ярового ячменя. Генетика. 1996;32(2):272–278. [Geras’kin S.A., Dikarev V.G., Dikareva N.S., Udalova A.A. Vlijanie razdel’nogo dejstvija ionizirujushhego izluchenija i solej tjazhelyh metallov na chastotu hromosomnyh aberracij v listovoj meristeme jarovogo jachmenja. Genetika. 1996;32(2):272–278. (In Russ.)]
  28. Geras’kin S.A., Kim J.K., Dikarev V.G., Oudalova A.A. et al. Cytogenetic effects of combined radioactive (137Cs) and chemical (Cd, Pb, and 2,4-D herbicide) contamination on spring barley intercalar meristem cells. Mutat. Res. 2005;586(2):147–59. https://doi.org/10.1016/j.mrgentox.2005.06.004
  29. Евсеева Т.И., Гераськин С.А., Майстренко Т.А., Белых Е.С. Проблемы количественной оценки биологических эффектов совместного действия факторов радиационной и химической природы. Радиац. биология. Радиоэкология. 2008;48(2):203–211. [Evseeva Т.І., Geras’kin Ѕ.А., Majstrenko Т.А., Belykh Е.Ѕ. The Problems of а Quantitative Estimation Combined Chemical and Radioactive Exposure on Biological Objects. Radiation Biology. Radioecology. 2008;48(2):203–211. (In Russ.)]
  30. Barberio A., Voltolini J.C., Mello M.L.S. Standardization of bulb and root sample sizes for the Allium cepa test. Ecotoxicology. 2011;20:927–935. https://doi.org/10.1007/s10646-011-0602-8
  31. Rank J. The method of Allium anaphase-telophase chromosome aberration assay. Ekologija Vilnius. 2003;1:38–42.
  32. Demidenko E., Miller T.W. Statistical determination of synergy based on Bliss definition of drugs independence. PLoS One. 2019;14(11):e0224137. https://doi.org/10.1371/journal.pone.0224137
  33. Simmons B.I., Blyth P.S.A., Blanchard J.L., et al. Refocusing multiple stressor research around the targets and scales of ecological impacts. Nat. Ecol. Evol. 2021;5(11):1478–1489. https://doi.org/10.1038/s41559-021-01547-4
  34. Hall E.J. Radiobiology for the Radiobiologist (2nd ed.) Harper and Row Maryland, 1978.
  35. Evans H.J. Chromosome aberrations induced by ionizing radiations. Int. Rev. Cytol. Acad. Press. 1962;13:221–321. https://doi.org/10.1016/S0074-7696(08)60285-5
  36. Ahmed A.Q., Salman A.Y., Hassan A.B. et al. The impact of Gamma Ray on DNA molecule. Int. J. Radiol. Radiat. Oncol. 2020;6(1):011–013. https://doi.org/10.17352/ijrro.000038
  37. Yoon H.E., Lee J.S., Myung S.H., Lee Y.S. Increased γ-H2AX by exposure to a 60-Hz magnetic fields combined with ionizing radiation, but not hydrogen peroxide, in non-tumorigenic human cell lines. Int. J. Radiat. Biol. 2014;90(4):291–298. https://doi.org/10.3109/09553002.2014.887866
  38. Shine, M.B., Guruprasad, K.N. Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiol. Plant. 2012;34:255–265. https://doi.org/10.1007/s11738-011-0824-7
  39. Shine M.B., Guruprasad K.N., Anand A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics. 2012;33(5):428–37. https://doi.org/10.1002/bem.21702
  40. Лебедева Л.И., Федорова С.А., Трунова С.А. и др. Митоз. Регуляция и организация деления клеточного ядра. Генетика. 2004;40(12):1589–1608. [Lebedeva L.I., Fedorova S.A., Trunova S.A. et al. Mitosis: regulation and organization of cell division. Russian Journal of Genetics. 2004;40(12):1313–1330. (in Russ.)]
  41. Vaijapurkar S.G., Agarwal D., Chaudhuri S.K. et al. Gamma-irradiated onions as a biological indicator of radiation dose. Radiat. Measurem. 2001;33(5):833–836. https://doi.org/10.1016/S1350-4487(01)00246-3
  42. Jazayeri A., Falck J., Lukas C. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nature Cell Biology. 2006;8(1):37–45. https://doi.org/10.1038/ncb1337
  43. Xu A., Wang Q., Lin T. Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells. Int. J. Mol. Sci. 2020;22;21(8):2952. https://doi.org/10.3390/ijms21082952
  44. Olivieri G., Bodycote J., Wolff S. Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science. 1984;223(4636):594–597. https://doi.org/10.1126/science.6695170
  45. Пелевина И.И., Алещенко А.В., Антощина М.М. и др. О некоторых путях формирования радиационно-индуцированного адаптивного ответа. Радиац.биология. Радиоэкология. 2017;57(6):565–572. [Pelevina I.I., Aleshenko A.V., Antoshchina М.М. et al. The ways of formation of radiation-induced radioadaptive response. Radiation biology. Radioecology. 2017;57(6):565–572. (In Russ.)]. https://doi.org/10.7868/S0869803117060017
  46. Aldibekova A.E., Styazhkina E.V., Tryapitsyna G.A., Pryachin E.A. Comparison of the Cytogenetic Effects of a Pulsed Magnetic Field and Gamma Radiation on Meristem Cells of Onion Seed Sprouts (Allium cepa L.). Biol. Bull. Russ. Acad. Sci. 2024;51:1–10. https://doi.org/10.1134/S106235902360304X
  47. Yu W., Wang M., Cai L., Jin Y. Pre-exposure of mice to low dose or low dose rate ionizing radiation reduces chromosome aberrations induced by subsequent exposure to high dose of radiation or mitomycin C. Chin. Med. Sci. J. 1995;10(1):50–3.
  48. Matsumoto H., Takahashi A., Ohnishi T. Radiation-Induced Adaptive Responses and Bystander Effects. Biol. Sci. Space. 2004;18(4):247–254. https://doi.org/10.2187/bss.18.247
  49. Ji, Y., He, Q., Sun, Y., Tong, J., & Cao, Y. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair. J. Toxicol. Environ. Health.2016;9(9–10):419–426. https://doi.org/10.1080/15287394.2016.1176618
  50. Qina He, Lin Zong, Yulong Sun et al. Adaptive response in mouse bone marrow stromal cells exposed to 900MHz radiofrequency fields: Impact of poly (ADP-ribose) polymerase (PARP). Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2017;820:19–25. https://doi.org/10.1016/j.mrgentox.2017.05.007
  51. Crane C.H. Hypofractionated ablative radiotherapy for locally advanced pancreatic cancer. J. Radiat. Res. 2016;1(1):53–57. https://doi.org/10.1093/jrr/rrw016

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of cells with chromosomal aberrations (CA) in the meristem of onion seed seedlings (solid line – the level of the expected additive effect, dashed lines – the boundaries of the standard error of the value of the expected additive effect). * Statistically significant difference from the value in the sham exposure group, p < 0.05; † – difference from the gamma radiation group, p < 0.05; † – difference from the value of the expected additive effect, p < 0.05.

Download (66KB)
3. Fig. 2. Frequency of cells with micronuclei in the meristem of onion seed seedlings (olid line – the level of the expected additive effect, dashed lines – the boundaries of the standard error of the value of the expected additive effect). * Statistically significant difference from the value in the sham exposure group, p < 0.05; † – difference from the gamma radiation group, p < 0.05; † – difference from the value of the expected additive effect, p < 0.05.

Download (75KB)

Copyright (c) 2025 Russian Academy of Sciences