Изменения экспрессии апоптоз-ассоциированных белков в височной коре и гиппокампе крыс при длительном киндлинге и их коррекция с помощью минолексина

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Эпилепсия – одно из наиболее распространенных и одновременно серьезных заболеваний головного мозга, от которого страдают более 70 миллионов человек во всем мире. Имеющиеся противосудорожные препараты способны подавить приступы у двух третей больных, у оставшейся трети пациентов эпилепсия признается фармакорезистентной и требует иных видов лечения, таких как хирургическое вмешательство, которое также не всегда приводит к положительным результатам. Преодоление резистентности – сложная комплексная задача, для решения которой требуется понимание биохимических путей и общих патологических процессов, лежащих в основе эпилепсии, в первую очередь апоптоза. Целью данной работы стало изучение влияния антибиотика минолексина на уровни апоптоза и экспрессию апоптоз-ассоциированных молекул (p53, Bcl-2, каспаза-3 и каспаза-8) в височной коре, подлежащем белом веществе и гиппокампе крыс линии Крушинского – Молодкиной (КМ) с наследственной аудиогенной эпилепсией при длительном киндлинге. Использованы крысы КМ в возрасте 11 месяцев, которых подвергали аудиогенной стимуляции и вводили внутрибрюшинно физраствор или антибиотик тетрациклинового ряда второго поколения минолексин в дозе 45 мг/кг, растворенный в физрастворе, в течение 14 дней, далее следовали 7 дней отдыха, после которых была проведена некропсия. Исследована кора височной доли и подлежащее белое вещество, гиппокамп. Оценивали уровни апоптоза (TUNEL) и экспрессию апоптоз-ассоциированных белков (p53, Bcl-2, каспаза-3 и -8) (иммуногистохимия, вестерн-блоттинг). У крыс линии КМ с наследственной аудиогенной эпилепсией показано повышение уровня апоптоза при длительном киндлинге во всех исследованных областях мозга. Выявлен р53-зависимый, но не зависящий от каспаз механизм активации апоптоза. При введении минолексина наблюдался антиапоптотический и нейропротективный эффект в височной доле и гиппокампе экспериментальных крыс.

Полный текст

Доступ закрыт

Об авторах

Е. Д. Бажанова

Институт эволюционной физиологии и биохимии им. И.М. Сеченова Российской академии наук; Научно-клинический центр токсикологии им. академика С.Н. Голикова Федерального медико-биологического агентства

Автор, ответственный за переписку.
Email: bazhanovae@mail.ru
Россия, Санкт-Петербург; Санкт-Петербург

А. А. Козлов

Научно-клинический центр токсикологии им. академика С.Н. Голикова Федерального медико-биологического агентства

Email: bazhanovae@mail.ru
Россия, Санкт-Петербург

Ю. О. Соколова

Научно-клинический центр токсикологии им. академика С.Н. Голикова Федерального медико-биологического агентства

Email: bazhanovae@mail.ru
Россия, Санкт-Петербург

А. А. Супонин

Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова Министерства здравоохранения Российской Федерации

Email: bazhanovae@mail.ru
Россия, Санкт-Петербург

Е. О. Демидова

Научно-клинический центр токсикологии им. академика С.Н. Голикова Федерального медико-биологического агентства

Email: bazhanovae@mail.ru
Россия, Санкт-Петербург

Список литературы

  1. Pong A, Xu K, Klein P (2023) Recent advances in pharmacotherapy for epilepsy. Curr Opin Neurol 36: 77–85. https://doi.org/10.1097/WCO.0000000000001144
  2. Bazhanova E, Kozlov A (2022) Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im SS Korsakova 122: 43–50. https://doi.org/10.17116/jnevro202212205143
  3. Henshall D (2007) Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy. Biochem Soc Trans 35: 421–423. https://doi.org/10.1042/BST0350421
  4. Sokolova T, Zabrodskaya Y, Litovchenko A, Paramonova N, Kasumov V, Kravtsova S, Skiteva E, Sitovskaya D, Bazhanova E (2022) Relationship between Neuroglial Apoptosis and Neuroinflammation in the Epileptic Focus of the Brain and in the Blood of Patients with Drug-Resistant Epilepsy. Int J Mol Sci 23: 12561. https://doi.org/10.3390/ijms232012561
  5. Henshall D, Simon R (2005) Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 25: 1557–1572. https://doi.org/10.1038/sj.jcbfm.9600149
  6. Li H, Zhang Z, Li H, Pan X, Wang Y (2023) New Insights into the Roles of p53 in Central Nervous System Diseases. Int J Neuropsychopharmacol 26: 465–473. https://doi.org/10.1093/ijnp/pyad030
  7. Tsujimoto Y, Finger L, Yunis J, Nowell P, Croce C (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097–1099. https://doi.org/10.1126/science.6093263
  8. Hollville E, Romero S, Deshmukh M (2019) Apoptotic cell death regulation in neurons. FEBS J 286: 3276–3298. https://doi.org/10.1111/febs.14970
  9. Vega-García A, Orozco-Suárez S, Villa A, Rocha L, Feria-Romero I, Alonso Vanegas M, Guevara-Guzmán R (2021) Cortical expression of IL1-β, Bcl-2, Caspase-3 and 9, SEMA-3a, NT-3 and P-glycoprotein as biological markers of intrinsic severity in drug-resistant temporal lobe epilepsy. Brain Res 1758: 147303. https://doi.org/10.1016/10.1016/j.brainres.2021.147303
  10. Eskandari E, Eaves C (2022) Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 221: e202201159. https://doi.org/10.1083/jcb.202201159
  11. D'Amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17: 1104–1114. https://doi.org/10.1007/s12264-012-1057-5
  12. Fritsch M, Günther S, Schwarzer R, Albert M-C, Schorn F, Werthenbach J, Schiffmann L, Stair N, Stocks H, Seeger J, Lamkanfi M, Krönke M, Pasparakis M, Kashkar H (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575: 683–687. https://doi.org/10.1038/s41586-019-1770-6
  13. Galvis-Alonso O, Cortes De Oliveira J, Garcia-Cairasco N (2004) Limbic epileptogenicity, cell loss and axonal reorganization induced by audiogenic and amygdala kindling in wistar audiogenic rats (WAR strain). Neuroscience 125: 787–802. https://doi.org/10.1016/j.neuroscience.2004.01.042
  14. Abarrategui B, Mai R, Sartori I, Francione S, Pelliccia V, Cossu M, Tassi L (2021) Temporal lobe epilepsy: A never-ending story. Epilepsy Behav 122: 108122. https://doi.org/10.1016/j.yebeh.2021.108122
  15. Henning O, Heuser K, Larsen V, Kyte E, Kostov H, Marthinsen P, Egge A, Alfstad K, Nakken K (2023) Temporal lobe epilepsy. Tidsskr Nor Laegeforen 143. https://doi.org/10.4045/tidsskr.22.0369
  16. Jonas M, Cunha B (1982) Minocycline. Ther Drug Monit 4: 137–145.
  17. Singh T, Thapliyal S, Bhatia S, Singh V, Singh M, Singh H, Kumar A, Mishra A (2022) Reconnoitering the transformative journey of minocycline from an antibiotic to an antiepileptic drug. Life Sci 15: 120346. https://doi.org/10.1016/j.lfs.2022.120346
  18. Костюкова АБ, Мосолов СН (2013) Нейровоспалительная гипотеза шизофрении и некоторые новые терапевтические подходы. Московский НИИ психиатрии Минздрава РФ 4: 8–17. [Kostyukova AB, Mosolov CH (2013) Neuroinflammatory hypothesis of schizophrenia and new therapeutical approaches. Moscow Res Institute of Psychiatry Minzdrava Rossii 4: 8–17. (In Russ)].
  19. Singh T, Thapliyal S, Bhatia S, Singh V, Singh M, Singh H, Kumar A, Mishra A (2022) Reconnoitering the transformative journey of minocycline from an antibiotic to an antiepileptic drug. Life Sci 15: 120346. https://doi.org/10.1016/j.lfs.2022.120346
  20. Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, Wang X (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287: 144–156. https://doi.org/10.1016/j.neuroscience.2014.12.021
  21. Nagarakanti S, Bishburg E (2016) Is Minocycline an Antiviral Agent? A Review of Current Literature. Basic Clin Pharmacol Toxicol 118: 4–8. https://doi.org/10.1111/bcpt.12444
  22. Singh S, Khanna D, Kalra S (2021) Minocycline and Doxycycline: More Than Antibiotics. Curr Mol Pharmacol 14: 1046–1065. https://doi.org/10.2174/1874467214666210210122628.
  23. Бажанова Е, Козлов А, Соколова Ю (2023) Этиопатологические механизмы эпилепсии и сравнительная характеристика экспериментальных моделей аудиогенной эпилепсии. Эпилепсия и пароксизмальн состояния 15: 372–383. [Bazhanova E, Kozlov A, Sokolova J (2023) Etiopathological mechanisms of epilepsy and comparative characteristics of experimental models of audiogenic epilepsy. Epilepsiya i paroksizmal'nye sostoyaniya 15: 372–383. (In Russ)]. https://doi.org/10.17749/2077-8333/epi.par.con.2023.161
  24. Горбачева ЕЛ, Куликов АА, Черниговская ЕВ, Глазова МВ, Никитина ЛС (2019) Особенности функционального состояния гипоталама-гипофизарно-адренокортикальной системы у крыс линии Крушинского – Молодкиной. Рос физиол журн им ИМ Сеченова 105: 150–164. [Gorbacheva EL, Kulikova АА, Chernigovskayaa EV, Glazovaa MV, Nikitina LS (2019) Functional State of the Hypothalamic-Pituitary-Adrenal Axis in Krushinsky–Molodkina Rats. Russ J Physiol 105: 150–164. (In Russ)]. https://doi.org/10.1134/S0869813919020043
  25. Paxinos G, Watson C (1998). The rat brain in stereotaxic coordinates. Academic Press 273.
  26. Dengler C, Coulter D (2016) Normal and epilepsy-associated pathologic function of the dentate gyrus. Prog Brain Res 226: 155–178. https://doi.org/10.1016/bs.pbr.2016.04.005
  27. Nasr S, Moghimi A, Mohammad-Zadeh M, Shamsizadeh A, Noorbakhsh S (2013) The effect of minocycline on seizures induced by amygdala kindling in rats. Seizure 22: 670–674. https://doi.org/10.1016/j.seizure.2013.05.005
  28. Nowak M, Strzelczyk A, Reif P, Schorlemmer K, Bauer S, Norwood B, Oertel W, Rosenow F, Strik H, Hamer H (2012). Minocycline as potent anticonvulsant in a patient with astrocytoma and drug resistant epilepsy. Seizure 21: 227–228. https://doi.org/10.1016/j.seizure.2011.12.009
  29. Querol Pascual M (2007) Temporal lobe epilepsy: clinical semiology and neurophysiological studies.b Semin Ultrasound CT MR28: 416–423. https://doi.org/10.1053/j.sult.2007.09.004
  30. Alhusaini S, Whelan C, Doherty C, Delanty N, Fitzsimons M, Cavalleri G (2016) Temporal Cortex Morphology in Mesial Temporal Lobe Epilepsy Patients and Their Asymptomatic Siblings. Cereb Cortex 26: 1234–1241. https://doi.org/10.1093/cercor/bhu315
  31. Mizutani M, Sone D, Sano T, Kimura Y, Maikusa N, Shigemoto Y, Goto Y, Takao M, Iwasaki M, Matsuda H, Sato N, Saito Y (2021) Histopathological validation and clinical correlates of hippocampal subfield volumetry based on T2-weighted MRI in temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 177: 106759. https://doi.org/10.1016/j.eplepsyres.2021.106759
  32. Schmitt A, Tatsch L, Vollhardt A, Schneider-Axmann T, Raabe F, Roell L, Heinsen H, Hof P, Falkai P, Schmitz C (2022) Decreased Oligodendrocyte Number in Hippocampal Subfield CA4 in Schizophrenia: A Replication Study. Cells 11: 3242. https://doi.org/10.3390/cells11203242
  33. Wang Y, Tian Y, Long Z, Dong D, He Q, Qiu J, Feng T, Chen H, Tahmasian M, Lei X (2024) Volume of the Dentate Gyrus/CA4 Hippocampal subfield mediates the interplay between sleep quality and depressive symptoms. Int J Clin Health Psychol 24: 100432. https://doi.org/10.1016/j.ijchp.2023.100432
  34. Shahid S, Wen Q, Risacher S, Farlow M, Unverzagt F, Apostolova L, Foroud T, Zetterberg H, Blennow K, Saykin A, Wu Y (2022) Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease. Brain 145: 2149–2160. https://doi.org/10.1093/brain/awac138
  35. Stirling D, Koochesfahani K, Steeves J, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11: 308–322. https://doi.org/10.1177/1073858405275175.
  36. Naderi Y, Panahi Y, Barreto G, Sahebkar A (2020) Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review. Neural Regen Res 15: 773–782. https://doi.org/10.4103/1673-5374.268898
  37. He J, Mao J, Hou L, Jin S, Wang X, Ding Z, Jin Z, Guo H, Dai R (2021) Minocycline attenuates neuronal apoptosis and improves motor function after traumatic brain injury in rats. Exp Anim 70: 563–569. https://doi.org/10.1538/expanim.21-0028
  38. Li J, Chen J, Mo H, Chen J, Qian C, Yan F, Chi G, Hu Q, Wang L, Chen G (2016) Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage. Mol Neurobiol 53: 2668–2678. https://doi.org/10.1007/s12035-015-9318-8
  39. Kelly K, Sutton T, Weathered N, Ray N, Caldwell E, Plotkin Z, Dagher P (2004) Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. Am J Physiol Renal Physiol 287: F760–F766. https://doi.org/10.1152/ajprenal.00050.2004
  40. Xiong G, Hu T, Yang Y, Zhang H, Han M, Wang J, Jing Y, Liu H, Liao X, Liu Y (2024) Minocycline attenuates the bilirubin-induced developmental neurotoxicity through the regulation of innate immunity and oxidative stress in zebrafish embryos. Toxicol Appl Pharmacol 484: 116859. https://doi.org/10.1016/j.taap.2024.116859
  41. Ataie-Kachoie P, Pourgholami M, Bahrami-B F, Badar S, Morris D (2015) Minocycline attenuates hypoxia-inducible factor-1α expression correlated with modulation of p53 and AKT/mTOR/p70S6K/4E-BP1 pathway in ovarian cancer: in vitro and in vivo studies. Am J Cancer Res 5: 575–588.
  42. Roshanaee M, Abtahi-Eivary S, Shokoohi M, Fani M, Mahmoudian A, Moghimian M (2022) Protective Effect of Minocycline on Bax and Bcl-2 Gene Expression, Histological Damages and Oxidative Stress Induced by Ovarian Torsion in Adult Rats. Int J Fertil Steril 16: 30–35. https://doi.org/10.22074/IJFS.2021.522550.1069
  43. Levkovitch-Verbin H, Waserzoog Y, Vander S, Makarovsky D, Ilia P (2014) Minocycline mechanism of neuroprotection involves the Bcl-2 gene family in optic nerve transection. Int J Neurosci 124: 755–761. https://doi.org/10.3109/00207454.2013.878340
  44. Shokoohi M, Khaki A, Abadi A, Boukani L, Khodaie S, Kalarestaghi H, Khaki A, Moghimian M, Niazkar H, Shoorei H (2022) Minocycline can reduce testicular apoptosis related to varicocele in male rats. Andrologia 54: e14375. https://doi.org/10.1111/and.14375
  45. Rezaei A, Moqadami A, Khalaj-Kondori M, Feizi M (2024) Minocycline induced apoptosis and suppressed expression of matrix metalloproteinases 2 and 9 in the breast cancer MCF-7 cells. Mol Biol Rep 51: 463. https://doi.org/10.1007/s11033-024-09380-1
  46. Candé C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84: 215–222. https://doi.org/10.1016/s0300-9084(02)01374-3
  47. Luo Q, Wu X, Zhao P, Nan Y, Chang W, Zhu X, Su D, Liu Z (2021) OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv Sci (Weinh) 8: 2002874. https://doi.org/10.1002/advs.202002874
  48. Chang C-J, Cherng C-H, Liou W-S, Liao C-L (2005) Minocycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury. Ophthalmic 37: 202–213. https://doi.org/10.1159/000086610
  49. Krady J, Basu A, Allen C, Xu Y, LaNoue K, Gardner T, Levison S (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54: 1559–1565. https://doi.org/10.2337/diabetes.54.5.1559
  50. Chen M, Ona V, Li M, Ferrante R, Fink K, Zhu S, Bian J, Guo L, Farrell L, Hersch S, Hobbs W, Vonsattel J, Cha J, Friedlander R (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6: 797–801. https://doi.org/10.1038/77528
  51. Wei X, Zhao L, Liu J, Dodel R, Farlow M, Du Y (2005) Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience 131: 513–521. https://doi.org/10.1016/j.neuroscience.2004.11.014
  52. Mishra M, Basu A (2008) Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J Neurochem 105: 1582–1595. https://doi.org/10.1111/j.1471-4159.2008.05238.x
  53. Hirsch E, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel P (2003) The role of glial reaction and inflammation in Parkinson's disease. Ann NY Acad Sci 991: 214–228. https://doi.org/10.1111/j.1749-6632.2003.tb07478.x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. План эксперимента.

Скачать (108KB)
3. Рис. 2. Расположение исследуемых структур головного мозга крысы.

Скачать (290KB)
4. Рис. 3. Изменения числа TUNEL-позитивных клеток в исследуемых отделах головного мозга крыс Крушинского – Молодкиной. (a) – кора височной доли, (b) – белое вещество, (c) – поле СА4 гиппокампа, (d) – гранулярный слой зубчатой извилины гиппокампа, (e) – хилус гиппокампа. TUNEL-позитивные клетки в гиппокампе крыс линии Крушинского – Молодкиной, х200. (f) – Контроль физраствор, DAPI, (g) – Киндлинг физраствор, DAPI, (h) – Киндлинг антибиотик, DAPI, (i) – Контроль физраствор, TUNEL, (j) – Киндлинг физраствор, TUNEL, (k) – Киндлинг антибиотик, TUNEL. p < 0.05 по сравнению: * с группой Контроль физраствор, # с группой Киндлинг физраствор.

Скачать (706KB)
5. Рис. 4. Уровень экспрессии р53 в исследуемых отделах головного мозга крыс линии Крушинского – Молодкиной. (a) – кора височной доли, (b) – белое вещество, (c) – поле СА4 гиппокампа, (d) – гранулярный слой зубчатой извилины гиппокампа, (e) – хилус гиппокампа. р53-иммунопозитивные клетки в гиппокампе крыс линии Крушинского – Молодкиной, Иммуногистохимия, х200. (f) – Контроль физраствор, (g) – Киндлинг физраствор, (h) – Киндлинг антибиотик. p < 0.05 по сравнению: * с группой Контроль физраствор, # с группой Киндлинг физраствор.

Скачать (489KB)
6. Рис. 5. Уровень экспрессии Bcl-2 в исследуемых отделах головного мозга крыс линии Крушинского – Молодкиной. (a) – кора височной доли, (b) – белое вещество, (c) – поле СА4 гиппокампа, (d) – гранулярный слой зубчатой извилины гиппокампа, (e) – хилус гиппокампа. Bcl-2-иммунопозитивные клетки в гиппокампе крыс линии Крушинского – Молодкиной, Иммуногистохимия, х200. (f) – Контроль физраствор, (g) – Киндлинг физраствор, (h) – Киндлинг антибиотик. p < 0.05 по сравнению: * с группой Контроль физраствор, # с группой Киндлинг физраствор.

Скачать (473KB)
7. Рис. 6. Изменения оптической плотности каспаза-3-иммунореактивного материала в исследуемых отделах головного мозга крыс линии Крушинского – Молодкиной. (а) – кора височной доли, (b) – белое вещество, (c) – гиппокамп. # p < 0.05 по сравнению с группой Киндлинг физраствор.

Скачать (100KB)
8. Рис. 7. Изменения оптической плотности каспазы-8-иммунореактивного материала в исследуемых отделах головного мозга крыс линии Крушинского – Молодкиной. (а) – кора височной доли, (b) – белое вещество, (c) – гиппокамп. p < 0.05 по сравнению: * с группой Контроль физраствор, # с группой Киндлинг физраствор.

Скачать (99KB)

© Российская академия наук, 2024