Пол и возраст влияют на пищевые предпочтения и адаптацию к кратковременному потреблению высококалорийной “вкусной” пищи у мышей

Обложка

Цитировать

Полный текст

Аннотация

В настоящее время частота возникновения тяжелых форм ожирения увеличивается среди молодых людей и зависит от пола. Развитию ожирения способствует потребление высококалорийной “вкусной” пищи, однако влияние возраста и пола на адаптацию к высококалорийным диетам изучено мало. Задачей исследования было изучение влияния пола и возраста на краткосрочную адаптацию к высококалорийной “вкусной” диете (ВД: стандартный корм, сало и сладкое печенье) в период от юности до зрелости у мышей. Самцов и самок мышей линии C57Bl/6J содержали на ВД в течение 2 недель, начиная с возраста 7 (юные), 17 (молодые) и 27 недель (взрослые). Оценивали потребление энергии, выбор пищи, морфометрические и биохимические параметры. Пол и возраст влияли на выбор пищи и все изучаемые параметры. От юного к молодому возрасту уровень фактора роста фибробластов 21 (FGF21 – Fibroblast Growth Factor 21) в крови снижался, а потребление печенья увеличивалось. ВД увеличивала массу белого жира и уровень глюкозы в крови и снижала толерантность к глюкозе у юных самок в большей степени, чем у юных самцов. У молодых мышей ВД не оказывала влияния на толерантность к глюкозе и уровень глюкозы в крови. У взрослых мышей ВД увеличивала массу тела, вызывала развитие гиперлептинемии, гипергликемии, гиперинсулинемии и снижение толерантности к глюкозе только у самцов и не влияла на эти показатели у самок. Таким образом, реакция на высококалорийную диету меняется с возрастом и по-разному в зависимости от пола: самцы более, чем самки, устойчивы к ВД в юности, и менее – в зрелости. Пол и возраст начала диеты являются важными факторами в патофизиологии ожирения.

Об авторах

Е. Н. Макарова

Институт цитологии и генетики СО РАН

Email: maken@bionet.nsc.ru
Новосибирск, Россия

П. Е. Орлов

Институт цитологии и генетики СО РАН

Новосибирск, Россия

А. Ю. Казанцева

Институт цитологии и генетики СО РАН

Новосибирск, Россия

Т. В. Яковлева

Институт цитологии и генетики СО РАН

Новосибирск, Россия

Н. М. Бажан

Институт цитологии и генетики СО РАН

Новосибирск, Россия

Список литературы

  1. Moody A, Neave A (2020) Health Survey for England 2019: Overweight and obesity in adults and children. NHS Digit – Natl Stat.
  2. Nam GE, Kim Y-H, Han K, Jung J-H, Rhee E-J, Lee W-Y (2021) Obesity Fact Sheet in Korea, 2020: Prevalence of Obesity by Obesity Class from 2009 to 2018. J Obes Metab Syndr 30: 141–148. https://doi.org/10.7570/jomes21056
  3. Yang YS, Han B-D, Han K, Jung J-H, Son JW (2022) Obesity Fact Sheet in Korea, 2021: Trends in Obesity Prevalence and Obesity-Related Comorbidity Incidence Stratified by Age from 2009 to 2019. J Obes Metab Syndr 31: 169–177. https://doi.org/10.7570/jomes22024
  4. Choi HH, Choi G, Yoon H, Ha KH, Kim DJ (2022) Rising Incidence of Diabetes in Young Adults in South Korea: A National Cohort Study. Diabetes Metab J 46: 803–807. https://doi.org/10.4093/dmj.2021.0236
  5. Spinelli S, Monteleone E (2021) Food Preferences and Obesity. Endocrinol Metab 36: 209–219. https://doi.org/10.3803/EnM.2021.105
  6. Teo PS, van Dam RM, Whitton C, Tan LWL, Forde CG (2021) Consumption of Foods With Higher Energy Intake Rates is Associated With Greater Energy Intake, Adiposity, and Cardiovascular Risk Factors in Adults. J Nutr 151: 370–378. https://doi.org/10.1093/jn/nxaa344
  7. Luo Y, Burrington CM, Graff EC, Zhang J, Judd RL, Suksaranjit P, Kaewpoowat Q, Davenport SK, O’Neill AM, Greene MW (2016) Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Metab 310: E418–E439. https://doi.org/10.1152/ajpendo.00319.2015
  8. Kattapuram N, Zhang C, Muyyarikkandy MS, Surugihalli C, Muralidaran V, Gregory T, Sunny NE (2021) Dietary Macronutrient Composition Differentially Modulates the Remodeling of Mitochondrial Oxidative Metabolism during NAFLD. Metabolites 11: 272. https://doi.org/10.3390/metabo11050272
  9. Wei S, Hertle S, Spanagel R, Bilbao A (2021) Female mice are more prone to develop an addictive-like phenotype for sugar consumption. Sci Rep 11: 7364. https://doi.org/10.1038/s41598-021-86797-9
  10. Matas-Navarro P, Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Salamone JD, Correa M (2023) Sex and age differences in mice models of effort-based decision-making and anergia in depression: the role of dopamine, and cerebral-dopamine-neurotrophic-factor. Psychopharmacology (Berl) 240: 2285–2302. https://doi.org/10.1007/s00213-023-06430-7
  11. Petty S, Salame C, Mennella JA, Pepino MY (2020) Relationship between Sucrose Taste Detection Thresholds and Preferences in Children, Adolescents, and Adults. Nutrients 12: 1918. https://doi.org/10.3390/nu12071918
  12. Warneke W, Klaus S, Fink H, Langley-Evans SC, Voigt J-P (2014) The impact of cafeteria diet feeding on physiology and anxiety-related behaviour in male and female Sprague–Dawley rats of different ages. Pharmacol Biochem Behav 116: 45–54. https://doi.org/10.1016/j.pbb.2013.11.016
  13. Casimiro I, Stull ND, Tersey SA, Mirmira RG (2021) Phenotypic sexual dimorphism in response to dietary fat manipulation in C57BL/6J mice. J Diabet Complicat 35: 107795. https://doi.org/10.1016/j.jdiacomp.2020.107795
  14. MacCannell ADV, Futers TS, Whitehead A, Moran A, Witte KK, Roberts LD (2021) Sexual dimorphism in adipose tissue mitochondrial function and metabolic flexibility in obesity. Int J Obes 45: 1773–1781. https://doi.org/10.1038/s41366-021-00843-0
  15. Becerril S, Rodríguez A, Catalán V, Ramírez B, Mentxaka A, Neira G, Gómez-Ambrosi J, Frühbeck G (2022) Sex- and Age-Dependent Changes in the Adiponectin/Leptin Ratio in Experimental Diet-Induced Obesity in Mice. Nutrients 15: 73. https://doi.org/10.3390/nu15010073
  16. Hwang L-L, Wang C-H, Li T-L, Chang S-D, Lin L-C, Chen C-P, Chen C-T, Liang K-C, Ho I-K, Yang W-S, Chiou L-C (2010) Sex Differences in High-fat Diet-induced Obesity, Metabolic Alterations and Learning, and Synaptic Plasticity Deficits in Mice. Obesity 18: 463–469. https://doi.org/10.1038/oby.2009.273
  17. Yang Y, Smith DL, Keating KD, Allison DB, Nagy TR (2014) Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity 22: 2147–2155. https://doi.org/10.1002/oby.20811
  18. Medrikova D, Jilkova ZM, Bardova K, Janovska P, Rossmeisl M, Kopecky J (2012) Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes 36. https://doi.org/10.1038/ijo.2011.87
  19. Salinero AE, Anderson BM, Zuloaga KL (2018) Sex differences in the metabolic effects of diet-induced obesity vary by age of onset. Int J Obes 42: 1088–1091. https://doi.org/10.1038/s41366-018-0023-3
  20. Boulangé CL, Claus SP, Chou CJ, Collino S, Montoliu I, Kochhar S, Holmes E, Rezzi S, Nicholson JK, Dumas ME, Martin F-PJ (2013) Early Metabolic Adaptation in C57BL/6 Mice Resistant to High Fat Diet Induced Weight Gain Involves an Activation of Mitochondrial Oxidative Pathways. J Proteome Res 12: 1956–1968. https://doi.org/10.1021/pr400051s
  21. De Fourmestraux V, Neubauer H, Poussin C, Farmer P, Falquet L, Burcelin R, Delorenzi M, Thorens B (2004) Transcript Profiling Suggests That Differential Metabolic Adaptation of Mice to a High Fat Diet Is Associated with Changes in Liver to Muscle Lipid Fluxes. J Biol Chem 279: 50743–50753. https://doi.org/10.1074/jbc.M408014200
  22. Lundsgaard A-M, Holm JB, Sjøberg KA, Bojsen-Møller KN, Myrmel LS, Fjære E, Jensen BAH, Nicolaisen TS, Hingst JR, Hansen SL, Doll S, Geyer PE, Deshmukh AS, Holst JJ, Madsen L, Kristiansen K, Wojtaszewski JFP, Richter EA, Kiens B (2019) Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metab 29: 50–63.e4. https://doi.org/10.1016/j.cmet.2018.08.022
  23. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8: 21–34. https://doi.org/10.1111/j.1467-789X.2006.00270.x
  24. Von Holstein-Rathlou S, BonDurant LD, Peltekian L, Naber MC, Yin TC, Claflin KE, Urizar AI, Madsen AN, Ratner C, Holst B, Karstoft K, Vandenbeuch A, Anderson CB, Cassell MD, Thompson AP, Solomon TP, Rahmouni K, Kinnamon SC, Pieper AA, Gillum MP, Potthoff MJ (2016) FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metab 23. https://doi.org/10.1016/j.cmet.2015.12.003
  25. Makarova E, Kazantseva A, Dubinina A, Jakovleva T, Balybina N, Baranov K, Bazhan N (2021) The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression. Int J Mol Sci 22: 10561. https://doi.org/10.3390/ijms221910561
  26. Dutta S, Sengupta P (2016) Men and mice: Relating their ages. Life Sci 152: 244–248. https://doi.org/10.1016/j.lfs.2015.10.025
  27. Slomp M, Belegri E, Blancas-Velazquez AS, Diepenbroek C, Eggels L, Gumbs MCR, Joshi A, Koekkoek LL, Lamuadni K, Ugur M, Unmehopa UA, la Fleur SE, Mul JD (2019) Stressing the importance of choice: Validity of a preclinical free-choice high-caloric diet paradigm to model behavioural, physiological and molecular adaptations during human diet-induced obesity and metabolic dysfunction. J Neuroendocrinol 31. https://doi.org/10.1111/jne.12718
  28. Okada T, Mita Y, Sakoda H, Nakazato M (2019) Impaired adaptation of energy intake induces severe obesity in aged mice on a high-fat diet. Physiol Rep 7: e13989. https://doi.org/10.14814/phy2.13989
  29. Kim SJ, Kim S-E, Kim A-R, Kang S, Park M-Y, Sung M-K (2019) Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice. BMC Microbiol 19: 193. https://doi.org/10.1186/s12866-019-1557-9
  30. Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ k2179. https://doi.org/10.1136/bmj.k2179
  31. McGregor RA, Kwon E-Y, Shin S-K, Jung UJ, Kim E, Park JHY, Yu R, Yun JW, Choi M-S (2013) Time-course microarrays reveal modulation of developmental, lipid metabolism and immune gene networks in intrascapular brown adipose tissue during the development of diet-induced obesity. Int J Obes 37: 1524–1531. https://doi.org/10.1038/ijo.2013.52
  32. Maliszewska K, Kretowski A (2021) Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int J Mol Sci 22: 1530. https://doi.org/10.3390/ijms22041530
  33. Gelineau RR, Arruda NL, Hicks JA, Monteiro De Pina I, Hatzidis A, Seggio JA (2017) The behavioral and physiological effects of high-fat diet and alcohol consumption: Sex differences in C57 BL 6/J mice. Brain Behav 7. https://doi.org/10.1002/brb3.708
  34. Bazhan NM, Baklanov AV, Piskunova JV, Kazantseva AJ, Makarova EN (2017) Expression of genes involved in carbohydrate-lipid metabolism in muscle and fat tissues in the initial stage of adult-age obesity in fed and fasted mice. Physiol Rep 5: e13445. https://doi.org/10.14814/phy2.13445
  35. Stubbins RE, Najjar K, Holcomb VB, Hong J, Núñez NP (2012) Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes Metab 14: 58–66. https://doi.org/10.1111/j.1463-1326.2011.01488.x
  36. Dakin RS, Walker BR, Seckl JR, Hadoke PWF, Drake AJ (2015) Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism. Int J Obes 39: 1539–1547. https://doi.org/10.1038/ijo.2015.102
  37. Varlamov O (2017) Western-style diet, sex steroids and metabolism. Biochim Biophys Acta – Mol Basis Dis 1863: 1147–1155. https://doi.org/10.1016/j.bbadis.2016.05.025
  38. Bazhan N, Kazantseva A, Dubinina A, Balybina N, Jakovleva T, Makarova E (2024) Age of Cafeteria Diet Onset Influences Obesity Phenotype in Mice in a Sex-Specific Manner. Int J Mol Sci 25: 12436. https://doi.org/10.3390/ijms252212436
  39. Fazzino TL, Bjorlie K, Rohde K, Smith A, Yi R (2022) Choices between money and hyper-palatable food: Choice impulsivity and eating behavior. Heal Psychol 41: 538–548. https://doi.org/10.1037/hea0001185
  40. Garcia A, Hammami A, Mazellier L, Lagneau J, Darcel N, Higgs S, Davidenko O (2021) Social modeling of food choices in real life conditions concerns specific food categories. Appetite 162: 105162. https://doi.org/10.1016/j.appet.2021.105162
  41. Savage JS, Fisher JO, Birch LL (2007) Parental Influence on Eating Behavior: Conception to Adolescence. J Law Med Ethics 35: 22–34. https://doi.org/10.1111/j.1748-720X.2007.00111.x

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025