A Review on the use of Synthetic and Recombinant Antigens for the Immunodiagnosis of Tegumentary Leishmaniasis


Citar

Texto integral

Resumo

:Improving the diagnostic technology used to detect tegumentary leishmaniasis (TL) is essential in view of it being a widespread, often neglected tropical disease, with cases reported from the Southern United States to Northern Argentina. Recombinant proteins, recombinant multiepitope proteins, and synthetic peptides have been extensively researched and used in disease diagnosis. One of the benefits of applying these antigens is a measurable increase in sensitivity and specificity, which improves test accuracy. The present review aims to describe the use of these antigens and their diagnostic effectiveness. With that in mind, a bibliographic survey was conducted on the PudMed platform using the search terms "tegumentary leishmaniasis" AND "diagno", revealing that recombinant proteins have been described and evaluated for their value in TL diagnosis since the 1990s. However, there was a spike in the number of publications using all of the antigens between 2013 and 2022, confirming an expansion in research efforts to improve diagnosis. Moreover, all of the studies involving different antigens had promising results, including improved sensitivity and specificity. These data recognize the importance of doing research with new technologies focused on developing quick, more effective diagnostic kits as early diagnosis facilitates treatment.

Sobre autores

Kamila Silva

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Anna Ribeiro

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Isadora Gandra

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Carlos Resende

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Lucas da Silva Lopes

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Carolina Couto

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Verônica de Araujo Freire

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Isabelle Barcelos

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Sabrina Pereira

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Sandra Xavier

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Mariana da Paz

Laboratório de Bioativos e Nanobiotecnologia, Universidade Federal de São João Del-Rei

Email: info@benthamscience.net

Rodolfo Giunchetti

Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais

Email: info@benthamscience.net

Miguel Chávez-Fumagalli

Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María

Email: info@benthamscience.net

Ana Gonçalves

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Email: info@benthamscience.net

Eduardo Coelho

Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais

Email: info@benthamscience.net

Alexsandro Galdino

Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. de Vries, H.J.C.; Schallig, H.D. Cutaneous leishmaniasis: A 2022 updated narrative review into diagnosis and management developments. Am. J. Clin. Dermatol., 2022, 23(6), 823-840. doi: 10.1007/s40257-022-00726-8 PMID: 36103050
  2. Yamey, G.; Torreele, E. The world’s most neglected diseases. BMJ, 2002, 325(7357), 176-177. doi: 10.1136/bmj.325.7357.176 PMID: 12142292
  3. Freire, M.L.; Rêgo, F.D.; Cota, G.; Xavier, P.M.A.; Oliveira, E. Potential antigenic targets used in immunological tests for diagnosis of tegumentary leishmaniasis: A systematic review. PLoS One, 2021, 16(5), e0251956. doi: 10.1371/journal.pone.0251956 PMID: 34043671
  4. PAHO/WHO. Leishmaniasis. Epidemiological report of the Americas. 2019. Available from: https://iris.paho.org/handle/10665.2/51734 (Accessed on: 04/17/2023).
  5. World Health Organization. Leishmaniasis. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed on: 04/17/2023).
  6. Mann, S.; Frasca, K.; Scherrer, S.; Martínez, H.A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132. doi: 10.1007/s40475-021-00232-7 PMID: 33747716
  7. Salgado, V.R.; Queiroz, A.T.L.; Sanabani, S.S.; Oliveira, C.I.; Carvalho, E.M.; Costa, J.M.L.; Barral-Netto, M.; Barral, A. The microbiological signature of human cutaneous leishmaniasis lesions exhibits restricted bacterial diversity compared to healthy skin. Mem. Inst. Oswaldo Cruz, 2016, 111(4), 241-251. doi: 10.1590/0074-02760150436 PMID: 27074253
  8. Sharma, U.; Singh, S. Insect vectors of Leishmania: Distribution, physiology and their control. J. Vector Borne Dis., 2008, 45(4), 255-272. PMID: 19248652
  9. Teixeira, D.E.; Benchimol, M.; Rodrigues, J.C.F.; Crepaldi, P.H.; Pimenta, P.F.P.; de Souza, W. The cell biology of Leishmania: How to teach using animations. PLoS Pathog., 2013, 9(10), e1003594. doi: 10.1371/journal.ppat.1003594 PMID: 24130476
  10. Thakur, S.; Joshi, J.; Kaur, S. Leishmaniasis diagnosis: An update on the use of parasitological, immunological and molecular methods. J. Parasit. Dis., 2020, 44(2), 253-272. doi: 10.1007/s12639-020-01212-w PMID: 32419743
  11. Bates, P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol., 2007, 37(10), 1097-1106. doi: 10.1016/j.ijpara.2007.04.003 PMID: 17517415
  12. Uzcátegui, S.Y.D.V.; Dos Santos, V.T.; Silveira, F.T.; Ramos, P.K.S.; Santos, D.E.J.M.; Póvoa, M.M. Phlebotomines (Diptera: Psychodidae) from a Urban park of belém, Pará State, Northern Brazil and potential implications in the transmission of American cutaneous leishmaniasis. J. Med. Entomol., 2020, 57(1), 281-288. doi: 10.1093/jme/tjz153 PMID: 31550368
  13. Bailey, M.S.; Lockwood, D.N.J. Cutaneous leishmaniasis. Clin. Dermatol., 2007, 25(2), 203-211. doi: 10.1016/j.clindermatol.2006.05.008 PMID: 17350500
  14. Scorza, B.; Carvalho, E.; Wilson, M. Cutaneous manifestations of human and murine leishmaniasis. Int. J. Mol. Sci., 2017, 18(6), 1296. doi: 10.3390/ijms18061296 PMID: 28629171
  15. Temel, B.A.; Murrell, D.F.; Uzun, S. Cutaneous leishmaniasis: A neglected disfiguring disease for women. Int. J. Womens Dermatol., 2019, 5(3), 158-165. doi: 10.1016/j.ijwd.2019.01.002 PMID: 31360749
  16. Machado, G.U.; Prates, F.V.; Machado, P.R.L. Disseminated leishmaniasis: Clinical, pathogenic, and therapeutic aspects. An. Bras. Dermatol., 2019, 94(1), 9-16.
  17. Bennis, I.; De Brouwere, V.; Belrhiti, Z.; Sahibi, H.; Boelaert, M. Psychosocial burden of localised cutaneous Leishmaniasis: A scoping review. BMC Public Health, 2018, 18(1), 358. doi: 10.1186/s12889-018-5260-9 PMID: 29544463
  18. Martins, A.L.; Barreto, J.A.; Lauris, J.R.; Martins, A.C. American tegumentary leishmaniasis: Correlations among immunological, histopathological and clinical parameters. An Bras Dermatol., 2014, 89(1), 52-58.
  19. de Cavalcanti, P.M.; de Morais, R.C.S.; Silva, P.R.; Silva, T.L.A.M.; Albuquerque, G.S.C.; Tavares, D.H.C.; Castro, B.M.C.A.; Silva, R.F.; Pereira, V.R.A. Leishmaniases diagnosis: An update on the use of immunological and molecular tools. Cell Biosci., 2015, 5(1), 31. doi: 10.1186/s13578-015-0021-2 PMID: 26097678
  20. Al-Hucheimi, S.N.; Sultan, B.A.; Dhalimi, A.M.A. A comparative study of the diagnosis of Old World cutaneous leishmaniasis in Iraq by polymerase chain reaction and microbiologic and histopathologic methods. Int. J. Dermatol., 2009, 48(4), 404-408. doi: 10.1111/j.1365-4632.2009.03903.x PMID: 19335428
  21. Weigle, K.A.; Molineros, R.; Heredia, P.; D’Alessandro, A.; Saravia, N.G.; de Davalos, M. Diagnosis of cutaneous and mucocutaneous leishmaniasis in Colombia: A comparison of seven methods. Am. J. Trop. Med. Hyg., 1987, 36(3), 489-496. doi: 10.4269/ajtmh.1987.36.489 PMID: 2437815
  22. Erber, A.C.; Sandler, P.J.; de Avelar, D.M.; Swoboda, I.; Cota, G.; Walochnik, J. Diagnosis of visceral and cutaneous leishmaniasis using loop-mediated isothermal amplification (LAMP) protocols: A systematic review and meta-analysis. Parasit. Vectors, 2022, 15(1), 34. doi: 10.1186/s13071-021-05133-2 PMID: 35073980
  23. Veasey, J.V.; Zampieri, R.A.; Lellis, R.F.; Freitas, T.H.P.; Winter, L.M.F. Identification of leishmania species by high-resolution DNA dissociation in cases of American cutaneous leishmaniasis. An. Bras. Dermatol., 2020, 95(4), 459-468. doi: 10.1016/j.abd.2020.02.003 PMID: 32518010
  24. Bracamonte, M.E.; Álvarez, A.M.; Sosa, A.M.; Hoyos, C.L.; Lauthier, J.J.; Cajal, S.P.; Juarez, M.; Uncos, R.E.; Valdéz, S.F.J.; Acuña, L.; Diosque, P.; Basombrío, M.A.; Nasser, J.R.; Hashiguchi, Y.; Korenaga, M.; Barroso, P.A.; Marco, J.D. High performance of an enzyme linked immunosorbent assay for American tegumentary leishmaniasis diagnosis with Leishmania (Viannia) braziliensis amastigotes membrane crude antigens. PLoS One, 2020, 15(5), e0232829. doi: 10.1371/journal.pone.0232829 PMID: 32379842
  25. Vale, D.L.; Machado, A.S.; Ramos, F.F.; Lage, D.P.; Freitas, C.S.; de Oliveira, D.; Galvani, N.C.; Luiz, G.P.; Fagundes, M.I.; Fernandes, B.B.; Silva, O.J.A.; Ludolf, F.; Tavares, G.S.V.; Guimarães, N.S.; Chaves, A.T.; Fumagalli, C.M.A.; Tupinambás, U.; Rocha, M.O.C.; Gonçalves, D.U.; Martins, V.T.; Ávila, M.R.A.; Coelho, E.A.F. Evaluation of a chimeric protein based on B cell epitopes for the serodiagnosis of tegumentary and visceral leishmaniasis. Microb. Pathog., 2022, 167, 105562. doi: 10.1016/j.micpath.2022.105562 PMID: 35513293
  26. Ribeiro, P.A.F.; Souza, M.Q.; Dias, D.S.; Álvares, A.C.M.; Nogueira, L.M.; Machado, J.M.; dos Santos, J.C.; Godoi, R.R.; Nobrega, Y.K.M.; Paz, C.M.; de Freitas, S.M.; Felipe, M.S.S.; Torres, F.A.G.; Galdino, A.S. A custom-designed recombinant multiepitope protein for human cytomegalovirus diagnosis. Recent Pat. Biotechnol., 2019, 13(4), 316-328. doi: 10.2174/1872208313666190716093911 PMID: 31333134
  27. Pagniez, J.; Petitdidier, E.; Parra-Zuleta, O.; Pissarra, J.; Gonçalves, B.R. A systematic review of peptide-based serological tests for the diagnosis of leishmaniasis. Parasite, 2023, 30, 10. doi: 10.1051/parasite/2023011 PMID: 37010451
  28. Sidiq, Z.; Hanif, M.; Dwivedi, K.K.; Chopra, K.K. Benefits and limitations of serological assays in COVID-19 infection. Indian J. Tuberc., 2020, 67(4), S163-S166. doi: 10.1016/j.ijtb.2020.07.034 PMID: 33308664
  29. Dipti, C.A.; Jain, S.K.; Navin, K. A novel multiepitope recombinant protein as a high sensitivity and specificity hepatitis C diagnostic intermediate. Protein Expr. Purif., 2006, 47, 319-328. doi: 10.1016/j.pep.2005.12.012 PMID: 16504539
  30. de Souza, M.Q.; Galdino, A.S.; dos Santos, J.C.; Soares, M.V.; Nóbrega, Y.C.; Álvares, A.C.M.; de Freitas, S.M.; Torres, F.A.G.; Felipe, M.S.S. A recombinant multiepitope protein for hepatitis B diagnosis. BioMed Res. Int., 2013, 2013, 1-7. doi: 10.1155/2013/148317 PMID: 24294596
  31. AnandaRão, R.; Swaminathan, S.; Fernando, S.; Jana, A.M.; Khanna, N. Recombinant multiepitope protein for early detection of dengue infections. Clin. Vaccine Immunol., 2006, 13(1), 59-67. doi: 10.1128/CVI.13.1.59-67.2006 PMID: 16426001
  32. Taherkhani, R.; Farshadpour, F.; Makvandi, M. Design and production of a multiepitope construct derived from hepatitis E virus capsid protein. J. Med. Virol., 2015, 87(7), 1225-1234. doi: 10.1002/jmv.24171 PMID: 25784455
  33. Thomasini, R.L.; Souza, H.G.A.; Bruna-Romero, O.; Totola, A.H.; Gonçales, N.S.L.; Lima, C.X. Evaluation of recombinant multiepitope antigens for hepatitis C virus diagnosis: A lower cost alternative for antigen production. J. Clin. Lab. Anal., 2018, 32, e22410. doi: 10.1002/jcla.22410 PMID: 29453831
  34. Yengo, B.N.; Shintouo, C.M.; Hotterbeekx, A.; Yaah, N.E.; Shey, R.A.; Quanico, J.; Baggerman, G.; Ayong, L.; Vanhamme, L.; Njemini, R.; Souopgui, J.; Colebunders, R.; Ghogomu, S.M. Immunoinformatics design and assessment of a multiepitope antigen (OvMCBL02) for onchocerciasis diagnosis and monitoring. Diagnostics, 2022, 12(6), 1440. doi: 10.3390/diagnostics12061440 PMID: 35741250
  35. Faria, A.R.; de Veloso, C.L.; Vital, C.W.; Reis, A.B.; Damasceno, L.M.; Gazzinelli, R.T.; Andrade, H.M. New recombinant multiepitope proteins for the diagnosis of asymptomatic dogs infected with Leishmania infantum. PLoS Negl. Trop. Dis., 2015, 9(1), e3429. doi: 10.1371/journal.pntd.0003429 PMID: 25569685
  36. Jameie, F.; Dalimi, A.; Pirestani, M.; Mohebali, M. Detection of leishmania infantum infection in reservoir dogs using a multiepitope recombinant protein (PQ10). Arch. Razi Inst., 2020, 75(3), 327-338. PMID: 33025773
  37. Machado, J.M.; Pereira, I.A.G.; Maia, A.C.G.; Francisco, M.F.C.; Nogueira, L.M.; Gandra, I.B.; Ribeiro, A.J.; Silva, K.A.; Resende, C.A.A.; da Silva, J.O.; dos Santos, M.; Gonçalves, A.A.M.; Tavares, G.S.V.; Fumagalli, C.M.A.; da-Paz, C.M.; Giunchetti, R.C.; Rocha, M.O.C.; Chaves, A.T.; Coelho, E.A.F.; Galdino, A.S. Proof of concept of a novel multiepitope recombinant protein for the serodiagnosis of patients with chagas disease. Pathogens, 2023, 12(2), 312. doi: 10.3390/pathogens12020312 PMID: 36839584
  38. Link, J.S.; Alban, S.M.; Soccol, C.R.; Pereira, G.V.M.; Soccol, T.V. Synthetic peptides as potential antigens for cutaneous leishmaniosis diagnosis. J. Immunol. Res., 2017, 2017, 1-10. doi: 10.1155/2017/5871043 PMID: 28367456
  39. Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318. doi: 10.1016/j.cimid.2004.03.004 PMID: 15225981
  40. Gomes, C.M.; de Paula, N.A.; Cesetti, M.V.; Roselino, A.M.; Sampaio, R.N. Mucocutaneous leishmaniasis: Accuracy and molecular validation of non-invasive procedures in an endemic area for L. (V.) braziliensis. Diagn. Microbiol. Infect. Dis., 2014, 79(4), 413-418. doi: 10.1016/j.diagmicrobio.2014.05.002 PMID: 24923211
  41. Garcia, G.C.; Carvalho, A.M.R.S.; Duarte, M.C.; Silva, M.F.C.; Medeiros, F.A.C.; Coelho, E.A.F.; de Franco, M.D.M.; Gonçalves, D.U.; de Mendes, O.T.A.; Souza, M.D. Development of a chimeric protein based on a proteomic approach for the serological diagnosis of human tegumentary leishmaniasis. Appl. Microbiol. Biotechnol., 2021, 105(18), 6805-6817. doi: 10.1007/s00253-021-11518-1 PMID: 34432132
  42. GVR. Available from: https://www.grandviewresearch.com/industry-analysis/recombinant-proteins-market-report (Accessed on: 25/04/2023).
  43. Do, H.D.; Vandermies, M.; Fickers, P.; Theron, C.W. Unconventional Yeast Species to Produce Recombinant Proteins and Metabolites, Biological Sciences Reference Module; Elsevier, 2019. doi: 10.1016/B978-0-12-809633-8.20885-6
  44. Camussone, C.; Gonzalez, V.; Belluzo, M.S.; Pujato, N.; Ribone, M.E.; Lagier, C.M.; Marcipar, I.S. Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis. Clin. Vaccine Immunol., 2009, 16(6), 899-905. doi: 10.1128/CVI.00005-09 PMID: 19339486
  45. Santos, E.F.; Silva, .A.O.; Freitas, N.E.M.; Leony, L.M.; Daltro, R.T.; Santos, C.A.S.T.; Almeida, M.C.C.; Araújo, F.L.V.; Celedon, P.A.F.; Krieger, M.A.; Zanchin, N.I.T.; Reis, M.G.; Santos, F.L.N. Performance of chimeric Trypanosoma cruzi antigens in serological screening for chagas disease in blood banks. Front. Med., 2022, 9, 852864. doi: 10.3389/fmed.2022.852864 PMID: 35330587
  46. Simonson, P.; Bhattacharyya, T.; El-Safi, S.; Miles, M.A. Linear and conformational determinants of visceral leishmaniasis diagnostic antigens rK28 and rK39. Parasit. Vectors, 2022, 15(1), 387. doi: 10.1186/s13071-022-05495-1 PMID: 36273150
  47. Yan, Y.H.; Li, M.C.; Liu, H.C.; Xiao, T.Y.; Li, N.; Lou, Y.L.; Wan, K.L. Cellular immunity evaluation of five mycobacterium tuberculosis recombinant proteins and their compositions. Chinese J. Prev. Med., 2020, 54(5), 539-545. doi: 10.3760/cma.j.cn112150-20191119-00872
  48. Kotresha, D.; Noordin, R. Recombinant proteins in the diagnosis of toxoplasmosis. Acta Pathol. Microbiol. Scand. Suppl., 2010, 118(8), 529-542. doi: 10.1111/j.1600-0463.2010.02629.x PMID: 20666734
  49. Chao, C.C.; Zhang, Z.; Belinskaya, T.; Thipmontree, W.; Tantibhedyangkul, W.; Silpasakorn, S.; Wongsawat, E.; Suputtamongkol, Y.; Ching, W.M. An ELISA assay using a combination of recombinant proteins from multiple strains of Orientia tsutsugamushi offers an accurate diagnosis for scrub typhus. BMC Infect. Dis., 2017, 17(1), 413. doi: 10.1186/s12879-017-2512-8 PMID: 28601091
  50. da Rosa, M.C.; Martins, G.; Rocha, B.R.; Correia, L.; Ferronato, G.; Lilenbaum, W.; Dellagostin, O.A. Assessment of the immunogenicity of the leptospiral LipL32, LigAni, and LigBrep recombinant proteins in the sheep model. Comp. Immunol. Microbiol. Infect. Dis., 2019, 65, 176-180. doi: 10.1016/j.cimid.2019.05.012 PMID: 31300110
  51. Zhang, K.; Lin, G.; Han, Y.; Li, J. Serological diagnosis of toxoplasmosis and standardization. Clin. Chim. Acta, 2016, 461, 83-89. doi: 10.1016/j.cca.2016.07.018 PMID: 27470936
  52. Ai, J.W.; Zhou, X.; Xu, T.; Yang, M.; Chen, Y.; He, G.Q.; Pan, N.; Cai, Y.; Li, Y.; Wang, X.; Su, H.; Wang, T.; Zeng, W.; Zhang, W.H. Rapid and ultrasensitive CRISPR-based diagnostic test for Mycobacterium tuberculosis. Emerg. Microbes Infect., 2019, 8(1), 1361-1369. doi: 10.1080/22221751.2019.1664939 PMID: 31522608
  53. Shahid, I.; Alzahrani, A.R.; Al-Ghamdi, S.S.; Alanazi, I.M.; Rehman, S.; Hassan, S.; Hepatitis, C. Hepatitis C diagnosis: Simplified solutions, predictive barriers, and future promises. Diagnostics, 2021, 11(7), 1253. doi: 10.3390/diagnostics11071253 PMID: 34359335
  54. GME. Peptides diagnostics market size. 2023. Available from: https://www.globalmarketestimates.com/market-report/peptides-diagnostics-market-3737 (Accessed on: May 18, 2023).
  55. Trier, N.H.; Holm, B.E.; Heiden, J.; Slot, O.; Locht, H.; Lindegaard, H.; Svendsen, A.; Nielsen, C.T.; Jacobsen, S.; Theander, E.; Houen, G. Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis. Sci. Rep., 2018, 8(1), 3684. doi: 10.1038/s41598-018-22058-6 PMID: 29487382
  56. Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci., 2022, 23(3), 1445. doi: 10.3390/ijms23031445 PMID: 35163367
  57. Hansen, P.R.; Oddo, A. Fmoc solid-phase peptide synthesis. Methods Mol. Biol., 2015, 1348, 33-50. doi: 10.1007/978-1-4939-2999-3_5 PMID: 26424261
  58. Florez, M.M.; de Oliveira, C.I.; Puerta, C.; Guzman, F.; Ayala, M.; Montoya, G.; Delgado, G. Synthetic peptides derived from ribosomal proteins of Leishmania spp. in mucocutaneous leishmaniasis: Diagnostic usefulness. Protein Pept. Lett., 2018, 24(10), 982-988. doi: 10.2174/0929866524666170728143924 PMID: 28758598
  59. Costa, M.M.; Penido, M.; dos Santos, M.S.; Doro, D.; de Freitas, E.; Michalick, M.S.M.; Grimaldi, G.; Gazzinelli, R.T.; Fernandes, A.P. Improved canine and human visceral leishmaniasis immunodiagnosis using combinations of synthetic peptides in enzyme-linked immunosorbent assay. PLoS Negl. Trop. Dis., 2012, 6(5), e1622. doi: 10.1371/journal.pntd.0001622 PMID: 22629475
  60. Salles, B.C.S.; Dias, D.S.; Steiner, B.T.; Lage, D.P.; Ramos, F.F.; Ribeiro, P.A.F.; Santos, T.T.O.; Lima, M.P.; Costa, L.E.; Chaves, A.T.; Fumagalli, C.M.A.; Fujiwaraa, R.T.; Buenoa, L.L.; Caligiorne, R.B.; de Soares, M.D.F.; Silveira, J.A.G.; Ávila, M.R.A.; Gonçalves, D.U.; Coelho, E.A.F. Potential application of small myristoylated protein-3 evaluated as recombinant antigen and a synthetic peptide containing its linear B-cell epitope for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Immunobiology, 2019, 224(1), 163-171. doi: 10.1016/j.imbio.2018.09.003 PMID: 30266201
  61. Tabatabaei, M.S.; Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol., 2022, 2508, 115-134. doi: 10.1007/978-1-0716-2376-3_10 PMID: 35737237
  62. Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 2015, 72, 4-15. doi: 10.1016/j.peptides.2015.04.012 PMID: 25908411
  63. Lin, A.V. Direct ELISA. Methods Mol. Biol., 2015, 1318, 61-67. doi: 10.1007/978-1-4939-2742-5_6 PMID: 26160564
  64. Montoya, Y.; Leon, C.; Talledo, M.; Nolasco, O.; Padilla, C.; Najar, M.U.; Barker, D.C. Recombinant antigens for specific and sensitive serodiagnosis of Latin American tegumentary leishmaniasis. Trans. R. Soc. Trop. Med. Hyg., 1997, 91(6), 674-676. doi: 10.1016/S0035-9203(97)90520-4 PMID: 9580116
  65. Rey-Ladino, J.A.; Joshi, P.B.; Singh, B.; Gupta, R.; Reiner, N.E. Leishmania major: Molecular cloning, sequencing, and expression of the heat shock protein 60 gene reveals unique carboxy terminal peptide sequences. Exp. Parasitol., 1997, 85(3), 249-263. doi: 10.1006/expr.1996.4137 PMID: 9085922
  66. Celeste, B.J.; Angel, S.O.; Castro, L.G.M.; Gidlund, M.; Goto, H. Leishmania infantum heat shock protein 83 for the serodiagnosis of tegumentary leishmaniasis. Braz. J. Med. Biol. Res., 2004, 37(11), 1591-1593. doi: 10.1590/S0100-879X2004001100001 PMID: 15517072
  67. Souza, A.P.; Soto, M.; Costa, J.M.L.; Boaventura, V.S.; de Oliveira, C.I.; Cristal, J.R.; Netto, B.M.; Barral, A. Towards a more precise serological diagnosis of human tegumentary leishmaniasis using Leishmania recombinant proteins. PLoS One, 2013, 8(6), e66110. doi: 10.1371/journal.pone.0066110 PMID: 23776617
  68. Menezes-Souza, D.; Mendes, T.A.O.; Gomes, M.S.; Reis-Cunha, J.L.; Nagem, R.A.P.; Carneiro, C.M.; Coelho, E.A.F.; Galvão, L.M.C.; Fujiwara, R.T.; Bartholomeu, D.C. Epitope mapping of the HSP83.1 protein of Leishmania braziliensis discloses novel targets for immunodiagnosis of tegumentary and visceral clinical forms of leishmaniasis. Clin. Vaccine Immunol., 2014, 21(7), 949-959. doi: 10.1128/CVI.00151-14 PMID: 24807053
  69. Souza, M.D.; de Mendes, O.T.A.; de Leão, A.A.C.; de Gomes, S.M.; Fujiwara, R.T.; Bartholomeu, D.C. Linear B-cell epitope mapping of MAPK3 and MAPK4 from Leishmania braziliensis: Implications for the serodiagnosis of human and canine leishmaniasis. Appl. Microbiol. Biotechnol., 2015, 99(3), 1323-1336. doi: 10.1007/s00253-014-6168-7 PMID: 25359475
  70. Celeste, B.J.; Sanchez, A.M.C.; Sanchez, R.E.M.; Castro, L.G.M.; Costa, L.F.A.; Goto, H. Recombinant Leishmania infantum heat shock protein 83 for the serodiagnosis of cutaneous, mucosal, and visceral leishmaniases. Am. J. Trop. Med. Hyg., 2014, 90(5), 860-865. doi: 10.4269/ajtmh.13-0623 PMID: 24615136
  71. Coelho, E.A.F.; Costa, L.E.; Lage, D.P.; Martins, V.T.; Garde, E.; de Pereira, J.N.C.; Lopes, E.G.P.; Borges, L.F.N.M.; Duarte, M.C.; Souza, M.D.; de Soares, M.D.F.; Fumagalli, C.M.A.; Soto, M.; Tavares, C.A.P. Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Vet. Parasitol., 2016, 215, 63-71. doi: 10.1016/j.vetpar.2015.11.006 PMID: 26790739
  72. Duarte, M.C.; Pimenta, D.C.; Souza, M.D.; Magalhães, R.D.M.; Diniz, J.L.C.P.; Costa, L.E.; Fumagalli, C.M.A.; Lage, P.S.; Bartholomeu, D.C.; Alves, M.J.M.; Fernandes, A.P.; Soto, M.; Tavares, C.A.P.; Gonçalves, D.U.; Rocha, M.O.C.; Coelho, E.A.F. Proteins selected in leishmania (Viannia) braziliensis by an immunoproteomic approach with potential serodiagnosis applications for tegumentary leishmaniasis. Clin. Vaccine Immunol., 2015, 22(11), 1187-1196. doi: 10.1128/CVI.00465-15 PMID: 26376929
  73. Lima, M.P.; Costa, L.E.; Duarte, M.C.; Souza, M.D.; Salles, B.C.S.; de Santos, O.T.T.; Ramos, F.F.; Fumagalli, C.M.A.; Kursancew, A.C.S.; Ambrósio, R.P.; Roatt, B.M.; Ávila, M.R.A.; Gonçalves, D.U.; Coelho, E.A.F. Evaluation of a hypothetical protein for serodiagnosis and as a potential marker for post-treatment serological evaluation of tegumentary leishmaniasis patients. Parasitol. Res., 2017, 116(4), 1197-1206. doi: 10.1007/s00436-017-5397-y PMID: 28150041
  74. Carvalho, A.M.R.S.; Costa, L.E.; Salles, B.C.S.; Santos, T.T.O.; Ramos, F.F.; Lima, M.P.; Fumagalli, C.M.A.; Silvestre, B.T.; Portela, Á.S.B.; Roatt, B.M.; Silveira, J.A.G.; Gonçalves, D.U.; Soares, M.D.F.; Duarte, M.C.; Souza, M.D.; Coelho, E.A.F. An ELISA immunoassay employing a conserved Leishmania hypothetical protein for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. Cell. Immunol., 2017, 318, 42-48. doi: 10.1016/j.cellimm.2017.06.001 PMID: 28602279
  75. Sato, C.M.; Sanchez, M.C.A.; Celeste, B.J.; Duthie, M.S.; Guderian, J.; Reed, S.G.; de Brito, M.E.F.; Campos, M.B.; de Encarnação, S.H.V.; Guerra, J.; de Mesquita, T.G.R.; Pinheiro, S.K.; Ramasawmy, R.; Silveira, F.T.; de Assis Souza, M.; Goto, H. Use of recombinant antigens for sensitive serodiagnosis of American tegumentary leishmaniasis caused by different leishmania species. J. Clin. Microbiol., 2017, 55(2), 495-503. doi: 10.1128/JCM.01904-16 PMID: 27927927
  76. Lima, M.P.; Costa, L.E.; Lage, D.P.; Dias, D.S.; Ribeiro, P.A.F.; Machado, A.S.; Ramos, F.F.; Salles, B.C.S.; Fagundes, M.I.; Carvalho, G.B.; Franklin, M.L.; Fumagalli, C.M.A.; Ávila, M.R.A.; Souza, M.D.; Duarte, M.C.; Teixeira, A.L.; Gonçalves, D.U.; Coelho, E.A.F. Diagnostic application of recombinant Leishmania proteins and evaluation of their in vitro immunogenicity after stimulation of immune cells collected from tegumentary leishmaniasis patients and healthy individuals. Cell. Immunol., 2018, 334, 61-69. doi: 10.1016/j.cellimm.2018.09.006 PMID: 30287082
  77. Ribeiro, P.A.F.; Dias, D.S.; Lage, D.P.; Costa, L.E.; Salles, B.C.S.; Steiner, B.T.; Ramos, F.F.; Lima, M.P.; Santos, T.T.O.; Chaves, A.T.; Fumagalli, C.M.A.; Fujiwara, R.T.; Bueno, L.L.; Caligiorne, R.B.; de Soares, M.D.F.; Silveira, J.A.G.; Ávila, M.R.A.; Gonçalves, D.U.; Coelho, E.A.F. A conserved Leishmania hypothetical protein evaluated for the serodiagnosis of canine and human visceral and tegumentary leishmaniasis, as well as a serological marker for the posttreatment patient follow-up. Diagn. Microbiol. Infect. Dis., 2018, 92(3), 196-203. doi: 10.1016/j.diagmicrobio.2018.05.026 PMID: 29941364
  78. Medeiros, R.M.T.E.; Carvalho, A.M.R.S.; Ferraz, I.A.; Medeiros, F.A.C.; Cruz, L.R.; Rocha, M.O.C.; Coelho, E.A.F.; Gonçalves, D.U.; Mendes, T.A.O.; Duarte, M.C.; Souza, M.D. Mapping linear B-cell epitopes of the Tryparedoxin Peroxidase and its implications in the serological diagnosis of tegumentary leishmaniasis. Acta Trop., 2022, 232, 106521. doi: 10.1016/j.actatropica.2022.106521 PMID: 35595092
  79. Galvani, N.C.; Machado, A.S.; Lage, D.P.; Martins, V.T.; de Oliveira, D.; Freitas, C.S.; Vale, D.L.; Fernandes, B.B.; Silva, O.J.A.; Reis, T.A.R.; Santos, T.T.O.; Ramos, F.F.; Bandeira, R.S.; Ludolf, F.; Tavares, G.S.V.; Guimarães, N.S.; Tupinambás, U.; Fumagalli, C.M.A.; Humbert, M.V.; Gonçalves, D.U.; Christodoulides, M.; Ávila, M.R.A.; Coelho, E.A.F. Sensitive and specific serodiagnosis of tegumentary leishmaniasis using a new chimeric protein based on specific B-cell epitopes of Leishmania antigenic proteins. Microb. Pathog., 2022, 162, 105341. doi: 10.1016/j.micpath.2021.105341 PMID: 34883228
  80. Costa, L.E.; Salles, B.C.S.; Alves, P.T.; Dias, A.C.S.; Vaz, E.R.; Ramos, F.F.; Menezes-Souza, D.; Duarte, M.C.; Roatt, B.M.; Fumagalli, C.M.A.; Tavares, C.A.P.; Gonçalves, D.U.; Rocha, M.O.C.; Goulart, L.R.; Coelho, E.A.F. New serological tools for improved diagnosis of human tegumentary leishmaniasis. J. Immunol. Methods, 2016, 434, 39-45. doi: 10.1016/j.jim.2016.04.005 PMID: 27090730
  81. Manual of procedures for leishmaniases surveillance and control in the Americas; Pan American Health Organization: Washington, D.C., 2019. https://iris.paho.org/handle/10665.2/51838
  82. de Carvalho, B.C.; Vital, T.; Osiro, J.; Gomes, C.M.; Noronha, E.; Dallago, B.; Rosa, A.C.; Carvalho, J.L.; Hagström, L.; Hecht, M.; Nitz, N. Multiparametric analysis of host and parasite elements in new world tegumentary leishmaniasis. Front. Cell. Infect. Microbiol., 2022, 12, 956112. doi: 10.3389/fcimb.2022.956112 PMID: 36017367
  83. Zanetti, A.S.; Sato, C.M.; Longhi, F.G.; Ferreira, S.M.B.; Espinosa, O.A. Diagnostic accuracy of enzyme-linked immunosorbent assays to detect anti-leishmania antibodies in patients with American tegumentary leishmaniasis: A systematic review. Rev. Inst. Med. Trop. São Paulo, 2019, 61, e42. doi: 10.1590/s1678-9946201961042 PMID: 31432991
  84. Reimão, J.Q.; Coser, E.M.; Lee, M.R.; Coelho, A.C. Laboratory diagnosis of cutaneous and visceral leishmaniasis: Current and future methods. Microorganisms, 2020, 8(11), 1632. doi: 10.3390/microorganisms8111632 PMID: 33105784
  85. Zheng, X.; Duan, R.; Gong, F.; Wei, X.; Dong, Y.; Chen, R.; yue Liang, M.; Tang, C.; Lu, L. Accuracy of serological tests for COVID-19: A systematic review and meta-analysis. Front. Public Health, 2022, 10, 923525. doi: 10.3389/fpubh.2022.923525 PMID: 36589993
  86. Kubar, J.; Fragaki, K. Recombinant DNA-derived leishmania proteins: From the laboratory to the field. Lancet Infect. Dis., 2005, 5(2), 107-114. doi: 10.1016/S1473-3099(05)70085-2 PMID: 15680780
  87. Romero, G.A.S.; Orge, M.G.O.; Guerra, M.V.F.; Paes, M.G.; Macêdo, V.O.; Carvalho, E.M. Antibody response in patients with cutaneous leishmaniasis infected by Leishmania (Viannia) braziliensis or Leishmania (Viannia) guyanensis in Brazil. Acta Trop., 2005, 93(1), 49-56. doi: 10.1016/j.actatropica.2004.09.005 PMID: 15589797
  88. Santi, A.M.M.; Murta, S.M.F. Impact of genetic diversity and genome plasticity of Leishmania spp. in treatment and the search for novel chemotherapeutic targets. Front. Cell. Infect. Microbiol., 2022, 12, 826287. doi: 10.3389/fcimb.2022.826287 PMID: 35141175
  89. Tilaki, H.K. Sample size estimation in diagnostic test studies of biomedical informatics. J. Biomed. Inform., 2014, 48, 193-204. doi: 10.1016/j.jbi.2014.02.013 PMID: 24582925
  90. González, U. Cochrane reviews on neglected diseases: The case of cutaneous leishmaniasis. Cochrane Database Syst. Rev., 2013, 2013(3), ED000055. doi: 10.1002/14651858.ED000055 PMID: 23641479
  91. Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev., 2013, 42(2), 450-457. doi: 10.1039/C2CS35255A PMID: 23032871
  92. Olejnik, B.; Kozioł, A.; Brzozowska, E.; Sieczkowska, F.M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev. Mol. Diagn., 2021, 21(9), 925-937. doi: 10.1080/14737159.2021.1957833 PMID: 34289786
  93. Bharadwaj, M.; Bengtson, M.; Golverdingen, M.; Waling, L.; Dekker, C. Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Negl. Trop. Dis., 2021, 15(6), e0009405. doi: 10.1371/journal.pntd.0009405 PMID: 34138846
  94. Alhajj, M.; Zubair, M.; Farhana, A. Enzyme linked immunosorbent assay. In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2023.
  95. Feng, S.; Sun, P.; Qu, C.; Wu, X.; Yang, L.; Yang, T.; Wang, S.; Fang, Y.; Chen, J. Exploring the core genes of schizophrenia based on bioinformatics analysis. Genes, 2022, 13(6), 967. doi: 10.3390/genes13060967 PMID: 35741729
  96. Doytchinova, I.A.; Flower, D.R. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J., 2008, 1(1), 22-26. doi: 10.2174/1875035400801010022
  97. Schirrmann, T.; Meyer, T.; Schütte, M.; Frenzel, A.; Hust, M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules, 2011, 16(1), 412-426. doi: 10.3390/molecules16010412 PMID: 21221060
  98. Anand, T.; Virmani, N.; Bera, B.C.; Vaid, R.K.; Vashisth, M.; Bardajatya, P.; Kumar, A.; Tripathi, B.N. Phage display technique as a tool for diagnosis and antibody selection for coronaviruses. Curr. Microbiol., 2021, 78(4), 1124-1134. doi: 10.1007/s00284-021-02398-9 PMID: 33687511
  99. Jaroszewicz, W.; Orłowska, M.J.; Pierzynowska, K.; Gaffke, L.; Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev., 2022, 46(2), fuab052. doi: 10.1093/femsre/fuab052 PMID: 34673942
  100. Morgado, F.N.; Silva, C.F.; Pimentel, M.I.F.; Porrozzi, R. Advancement in leishmaniasis diagnosis and therapeutics. Trop. Med. Infect. Dis., 2023, 8(5), 270. doi: 10.3390/tropicalmed8050270 PMID: 37235318

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024