An Update of Extracellular Vesicle Involvement in Different Steps of Cancer Metastasis and Targeting Strategies


如何引用文章

全文:

详细

Cancer metastasis is the deadliest event in tumorigenesis. Despite extensive research, there are still unsolved challenges regarding early metastasis detection and targeting strategies. Extracellular vesicles (EVs) and their impact on tumorigenic-related events are in the eye of current investigations. EVs represent a plethora of biomarkers and information, and they are considered key determinants in tumor progression and for tumor prognosis and monitoring. EVs are one of the key mediators for inter-cellular communications between tumor cells and their nearby stroma. They are involved in different steps of metastasis from invasion toward formation of pre-metastatic niches (PMNs), and final growth and colonization of tumor cells in desired organ/s of the target. Membrane components of EVs and their cargo can be traced for the identification of tumor metastasis, and their targeting is a promising strategy in cancer therapy. In this review, we aimed to discuss the current understanding of EV-based metastatic predilection in cancer, providing updated information about EV involvement in different metastatic steps and suggesting some strategies to hamper this devastating condition.

作者简介

Keywan Mortezaee

Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

Jamal Majidpoor

Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences

Email: info@benthamscience.net

参考

  1. Hsu, Y.L.; Huang, M.S.; Hung, J.Y.; Chang, W.A.; Tsai, Y.M.; Pan, Y.C.; Lin, Y.S.; Tsai, H.P.; Kuo, P.L. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer. Oncogene, 2020, 39(4), 739-753. doi: 10.1038/s41388-019-1024-y PMID: 31558801
  2. Majidpoor, J.; Mortezaee, K. Steps in metastasis: An updated review. Med. Oncol., 2021, 38(1), 3. doi: 10.1007/s12032-020-01447-w PMID: 33394200
  3. Mortezaee, K. Organ tropism in solid tumor metastasis: An updated review. Future Oncol., 2021, 17(15), 1943-1961. doi: 10.2217/fon-2020-1103 PMID: 33728946
  4. Crescitelli, R.; Lässer, C.; Lötvall, J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat. Protoc., 2021, 16(3), 1548-1580. doi: 10.1038/s41596-020-00466-1 PMID: 33495626
  5. Chen, W.; Zuo, F.; Zhang, K.; Xia, T.; Lei, W.; Zhang, Z.; Bao, L.; You, Y. Exosomal MIF derived from nasopharyngeal carcinoma promotes metastasis by repressing ferroptosis of macrophages. Front. Cell Dev. Biol., 2021, 9, 791187. doi: 10.3389/fcell.2021.791187 PMID: 35036405
  6. Adams, S.D. Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr. Biol., 2021, 31(7), 1403-1416. e7 doi: 10.1016/j.cub.2021.01.028
  7. Zomer, A.; Maynard, C.; Verweij, F.J.; Kamermans, A.; Schäfer, R.; Beerling, E.; Schiffelers, R.M.; de Wit, E.; Berenguer, J.; Ellenbroek, S.I.J.; Wurdinger, T.; Pegtel, D.M.; van Rheenen, J. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell, 2015, 161(5), 1046-1057. doi: 10.1016/j.cell.2015.04.042 PMID: 26000481
  8. Treps, L.; Edmond, S.; Harford-Wright, E.; Galan-Moya, E.M.; Schmitt, A.; Azzi, S.; Citerne, A.; Bidère, N.; Ricard, D.; Gavard, J. Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene, 2016, 35(20), 2615-2623. doi: 10.1038/onc.2015.317 PMID: 26364614
  9. Nishida-Aoki, N.; Tominaga, N.; Takeshita, F.; Sonoda, H.; Yoshioka, Y.; Ochiya, T. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol. Ther., 2017, 25(1), 181-191. doi: 10.1016/j.ymthe.2016.10.009 PMID: 28129113
  10. Clark, R.T. Imaging flow cytometry enhances particle detection sensitivity for extracellular vesicle analysis. Nat. Methods, 2015, 12(4), i-ii. doi: 10.1038/nmeth.f.380 PMID: 25751143
  11. Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; Rubinstein, E.; Boncompain, G.; Perez, F.; Théry, C. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun., 2021, 12(1), 4389. doi: 10.1038/s41467-021-24384-2 PMID: 34282141
  12. Luga, V.; Zhang, L.; Viloria-Petit, A.M.; Ogunjimi, A.A.; Inanlou, M.R.; Chiu, E.; Buchanan, M.; Hosein, A.N.; Basik, M.; Wrana, J.L. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 2012, 151(7), 1542-1556. doi: 10.1016/j.cell.2012.11.024 PMID: 23260141
  13. Andreu, Z.; Yáñez-Mó, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol., 2014, 5, 442. doi: 10.3389/fimmu.2014.00442 PMID: 25278937
  14. Al-Nedawi, K.; Meehan, B.; Micallef, J.; Lhotak, V.; May, L.; Guha, A.; Rak, J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol., 2008, 10(5), 619-624. doi: 10.1038/ncb1725 PMID: 18425114
  15. Balaj, L.; Lessard, R.; Dai, L.; Cho, Y.J.; Pomeroy, S.L.; Breakefield, X.O.; Skog, J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun., 2011, 2(1), 180. doi: 10.1038/ncomms1180 PMID: 21285958
  16. Fan, S.J.; Kroeger, B.; Marie, P.P.; Bridges, E.M.; Mason, J.D.; McCormick, K.; Zois, C.E.; Sheldon, H.; Khalid Alham, N.; Johnson, E.; Ellis, M.; Stefana, M.I.; Mendes, C.C.; Wainwright, S.M.; Cunningham, C.; Hamdy, F.C.; Morris, J.F.; Harris, A.L.; Wilson, C.; Goberdhan, D.C.I. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J., 2020, 39(16), e103009. doi: 10.15252/embj.2019103009 PMID: 32720716
  17. Takahashi, A.; Okada, R.; Nagao, K.; Kawamata, Y.; Hanyu, A.; Yoshimoto, S.; Takasugi, M.; Watanabe, S.; Kanemaki, M.T.; Obuse, C.; Hara, E. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun., 2017, 8(1), 15287. doi: 10.1038/ncomms15287 PMID: 28508895
  18. Takasugi, M.; Okada, R.; Takahashi, A.; Virya Chen, D.; Watanabe, S.; Hara, E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun., 2017, 8(1), 15729. doi: 10.1038/ncomms15728 PMID: 28585531
  19. Samuel, M.; Fonseka, P.; Sanwlani, R.; Gangoda, L.; Chee, S.H.; Keerthikumar, S.; Spurling, A.; Chitti, S.V.; Zanker, D.; Ang, C.S.; Atukorala, I.; Kang, T.; Shahi, S.; Marzan, A.L.; Nedeva, C.; Vennin, C.; Lucas, M.C.; Cheng, L.; Herrmann, D.; Pathan, M.; Chisanga, D.; Warren, S.C.; Zhao, K.; Abraham, N.; Anand, S.; Boukouris, S.; Adda, C.G.; Jiang, L.; Shekhar, T.M.; Baschuk, N.; Hawkins, C.J.; Johnston, A.J.; Orian, J.M.; Hoogenraad, N.J.; Poon, I.K.; Hill, A.F.; Jois, M.; Timpson, P.; Parker, B.S.; Mathivanan, S. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat. Commun., 2021, 12(1), 3950. doi: 10.1038/s41467-021-24273-8 PMID: 34168137
  20. Liu, Y.; Fan, J.; Xu, T.; Ahmadinejad, N.; Hess, K.; Lin, S.H.; Zhang, J.; Liu, X.; Liu, L.; Ning, B.; Liao, Z.; Hu, T.Y. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non–small cell lung cancer after concurrent chemoradiation. Sci. Adv., 2020, 6(11), eaaz6162. doi: 10.1126/sciadv.aaz6162 PMID: 32195353
  21. Sun, J.; Lu, Z.; Fu, W.; Lu, K.; Gu, X.; Xu, F.; Dai, J.; Yang, Y.; Jiang, J. Exosome-derived ADAM17 promotes liver metastasis in colorectal Cancer. Front. Pharmacol., 2021, 12, 734351. doi: 10.3389/fphar.2021.734351 PMID: 34650435
  22. Cardeñes, B.; Clares, I.; Toribio, V.; Pascual, L.; López-Martín, S.; Torres-Gomez, A.; Sainz de la Cuesta, R.; Lafuente, E.M.; López-Cabrera, M.; Yáñez-Mó, M.; Cabañas, C. Cellular integrin α5β1 and exosomal ADAM17 mediate the binding and uptake of exosomes produced by colorectal carcinoma cells. Int. J. Mol. Sci., 2021, 22(18), 9938. doi: 10.3390/ijms22189938 PMID: 34576100
  23. Kawakami, K.; Fujita, Y.; Kato, T.; Mizutani, K.; Kameyama, K.; Tsumoto, H.; Miura, Y.; Deguchi, T.; Ito, M. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol., 2015, 47(1), 384-390. doi: 10.3892/ijo.2015.3011 PMID: 25997717
  24. Du, W.W.; Li, X.; Ma, J.; Fang, L.; Wu, N.; Li, F.; Dhaliwal, P.; Yang, W.; Yee, A.J.; Yang, B.B. Promotion of tumor progression by exosome transmission of circular RNA circSKA3. Mol. Ther. Nucleic Acids, 2022, 27, 276-292. doi: 10.1016/j.omtn.2021.11.027 PMID: 35024241
  25. Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476. doi: 10.1038/ncb1800 PMID: 19011622
  26. Sung, B.H.; Ketova, T.; Hoshino, D.; Zijlstra, A.; Weaver, A.M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun., 2015, 6(1), 7164. doi: 10.1038/ncomms8164 PMID: 25968605
  27. Pegoraro, A.; De Marchi, E.; Ferracin, M.; Orioli, E.; Zanoni, M.; Bassi, C.; Tesei, A.; Capece, M.; Dika, E.; Negrini, M.; Di Virgilio, F.; Adinolfi, E. P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis., 2021, 12(12), 1088. doi: 10.1038/s41419-021-04378-0 PMID: 34789738
  28. Wu, J.; Xie, Q.; Liu, Y.; Gao, Y.; Qu, Z.; Mo, L.; Xu, Y.; Chen, R.; Shi, L. A small vimentin-binding molecule blocks cancer exosome release and reduces cancer cell mobility. Front. Pharmacol., 2021, 12, 627394. doi: 10.3389/fphar.2021.627394 PMID: 34305581
  29. Mortezaee, K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol. Int., 2021, 45(2), 273-286. doi: 10.1002/cbin.11506 PMID: 33236822
  30. Yang, K.; Zhang, F.; Luo, B.; Qu, Z. CAFs-derived small extracellular vesicles circN4BP2L2 promotes proliferation and metastasis of colorectal cancer via miR-664b-3p/HMGB3 pathway. Cancer Biol. Ther., 2022, 23(1), 404-416. doi: 10.1080/15384047.2022.2072164 PMID: 35722996
  31. Shi, Z.; Jiang, T.; Cao, B.; Sun, X.; Liu, J. CAF-derived exosomes deliver LINC01410 to promote epithelial-mesenchymal transition of esophageal squamous cell carcinoma. Exp. Cell Res., 2022, 412(2), 113033. doi: 10.1016/j.yexcr.2022.113033 PMID: 35041823
  32. Yan, Z.; Sheng, Z.; Zheng, Y.; Feng, R.; Xiao, Q.; Shi, L.; Li, H.; Yin, C.; Luo, H.; Hao, C.; Wang, W.; Zhang, B. Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis., 2021, 12(12), 1120. doi: 10.1038/s41419-021-04409-w PMID: 34853307
  33. Mortezaee, K.; Majidpoor, J.; Kharazinejad, E. Epithelial-mesenchymal transition in cancer stemness and heterogeneity: Updated. Med. Oncol., 2022, 39(12), 193. doi: 10.1007/s12032-022-01801-0 PMID: 36071302
  34. Song, J.W.; Zhu, J.; Wu, X.X.; Tu, T.; Huang, J.Q.; Chen, G.Z.; Liang, L.Y.; Zhou, C.H.; Xu, X.; Gong, L.Y. GOLPH3/CKAP4 promotes metastasis and tumorigenicity by enhancing the secretion of exosomal WNT3A in non-small-cell lung cancer. Cell Death Dis., 2021, 12(11), 976. doi: 10.1038/s41419-021-04265-8 PMID: 34671013
  35. Franzen, C.A.; Blackwell, R.H.; Todorovic, V.; Greco, K.A.; Foreman, K.E.; Flanigan, R.C.; Kuo, P.C.; Gupta, G.N. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis, 2015, 4(8), e163-e163. doi: 10.1038/oncsis.2015.21 PMID: 26280654
  36. Hu, C.; Zhang, Y.; Zhang, M.; Li, T.; Zheng, X.; Guo, Q.; Zhang, X. Exosomal Cripto-1 serves as a potential biomarker for perihilar cholangiocarcinoma. Front. Oncol., 2021, 11, 730615. doi: 10.3389/fonc.2021.730615 PMID: 34434900
  37. Ono, K.; Sogawa, C.; Kawai, H.; Tran, M.T.; Taha, E.A.; Lu, Y.; Oo, M.W.; Okusha, Y.; Okamura, H.; Ibaragi, S.; Takigawa, M.; Kozaki, K.I.; Nagatsuka, H.; Sasaki, A.; Okamoto, K.; Calderwood, S.K.; Eguchi, T. Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. J. Extracell. Vesicles, 2020, 9(1), 1769373. doi: 10.1080/20013078.2020.1769373 PMID: 33144925
  38. Bai, J.; Zhang, X.; Shi, D.; Xiang, Z.; Wang, S.; Yang, C.; Liu, Q.; Huang, S.; Fang, Y.; Zhang, W.; Song, J.; Xiong, B. Exosomal miR-128-3p promotes epithelial-to-mesenchymal transition in colorectal cancer cells by targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 signaling. Front. Cell Dev. Biol., 2021, 9, 568738. doi: 10.3389/fcell.2021.568738 PMID: 33634112
  39. Kim, H.S.; Kim, J.S.; Park, N.R.; Nam, H.; Sung, P.S.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; Hur, W.; Jang, J.W. Exosomal miR-125b exerts anti-metastatic properties and predicts early metastasis of hepatocellular carcinoma. Front. Oncol., 2021, 11, 637247. doi: 10.3389/fonc.2021.637247 PMID: 34386414
  40. Yang, Z.; Wang, W.; Zhao, L.; Wang, X.; Gimple, R.C.; Xu, L.; Wang, Y.; Rich, J.N.; Zhou, S. Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci. Adv., 2021, 7(9), eabb0737. doi: 10.1126/sciadv.abb0737 PMID: 33627414
  41. Lin, X.M.; Wang, Z.J.; Lin, Y.X.; Chen, H. Decreased exosome-delivered miR-486-5p is responsible for the peritoneal metastasis of gastric cancer cells by promoting EMT progress. World J. Surg. Oncol., 2021, 19(1), 312. doi: 10.1186/s12957-021-02381-5 PMID: 34686196
  42. Qin, W.; Wang, L.; Tian, H.; Wu, X.; Xiao, C.; Pan, Y.; Fan, M.; Tai, Y.; Liu, W.; Zhang, Q.; Yang, Y. CAF-derived exosomes transmitted Gremlin-1 promotes cancer progression and decreases the sensitivity of hepatoma cells to sorafenib. Mol. Carcinog., 2022, 61(8), 764-775. doi: 10.1002/mc.23416 PMID: 35638711
  43. Liu, W.; Wang, B.; Duan, A.; Shen, K.; Zhang, Q.; Tang, X.; Wei, Y.; Tang, J.; Zhang, S. Exosomal transfer of miR-769-5p promotes osteosarcoma proliferation and metastasis by targeting DUSP16. Cancer Cell Int., 2021, 21(1), 541. doi: 10.1186/s12935-021-02257-4 PMID: 34663350
  44. La Camera, G.; Gelsomino, L.; Malivindi, R.; Barone, I.; Panza, S.; De Rose, D.; Giordano, F.; D’Esposito, V.; Formisano, P.; Bonofiglio, D.; Andò, S.; Giordano, C.; Catalano, S. Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Lett., 2021, 521, 155-168. doi: 10.1016/j.canlet.2021.08.021 PMID: 34425186
  45. Wu, Q.; Li, J.; Li, Z.; Sun, S.; Zhu, S.; Wang, L.; Wu, J.; Yuan, J.; Zhang, Y.; Sun, S.; Wang, C. Retracted article: Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J. Exp. Clin. Cancer Res., 2019, 38(1), 223. doi: 10.1186/s13046-019-1210-3 PMID: 31138258
  46. Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.F.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515. doi: 10.1016/j.ccr.2014.03.007 PMID: 24735924
  47. Mortezaee, K. Normalization in tumor ecosystem: Opportunities and challenges. Cell Biol. Int., 2021, 45(10), 2017-2030. doi: 10.1002/cbin.11655 PMID: 34189798
  48. Kim, D.H.; Park, H.; Choi, Y.J.; Kang, M.H.; Kim, T.K.; Pack, C.G.; Choi, C.M.; Lee, J.C.; Rho, J.K. Exosomal miR-1260b derived from non-small cell lung cancer promotes tumor metastasis through the inhibition of HIPK2. Cell Death Dis., 2021, 12(8), 747. doi: 10.1038/s41419-021-04024-9 PMID: 34321461
  49. Mao, S.; Zheng, S.; Lu, Z.; Wang, X.; Wang, Y.; Zhang, G.; Xu, H.; Huang, J.; Lei, Y.; Liu, C.; Sun, N.; He, J. Exosomal miR-375-3p breaks vascular barrier and promotes small cell lung cancer metastasis by targeting claudin-1. Transl. Lung Cancer Res., 2021, 10(7), 3155-3172. doi: 10.21037/tlcr-21-356 PMID: 34430355
  50. Dou, R.; Liu, K.; Yang, C.; Zheng, J.; Shi, D.; Lin, X.; Wei, C.; Zhang, C.; Fang, Y.; Huang, S.; Song, J.; Wang, S.; Xiong, B. EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Clin. Transl. Med., 2021, 11(12), e595. doi: 10.1002/ctm2.595 PMID: 34936736
  51. Hara, T. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell, 2021, 39(6), 779-792. e11 doi: 10.1016/j.ccell.2021.05.002
  52. Wu, D.; Deng, S.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; Xu, Y. TGF-β1-mediated exosomal lnc-MMP2-2 increases blood–brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis., 2021, 12(8), 721. doi: 10.1038/s41419-021-04004-z PMID: 34285192
  53. Kobayashi, M.; Fujiwara, K.; Takahashi, K.; Yoshioka, Y.; Ochiya, T.; Podyma-Inoue, K.A.; Watabe, T. Transforming growth factor-β-induced secretion of extracellular vesicles from oral cancer cells evokes endothelial barrier instability via endothelial-mesenchymal transition. Inflamm. Regen., 2022, 42(1), 38. doi: 10.1186/s41232-022-00225-7 PMID: 36057626
  54. Ekström, E.J.; Bergenfelz, C.; von Bülow, V.; Serifler, F.; Carlemalm, E.; Jönsson, G.; Andersson, T.; Leandersson, K. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer, 2014, 13(1), 88. doi: 10.1186/1476-4598-13-88 PMID: 24766647
  55. Zheng, H.; Chen, C.; Luo, Y.; Yu, M.; He, W.; An, M.; Gao, B.; Kong, Y.; Ya, Y.; Lin, Y.; Li, Y.; Xie, K.; Huang, J.; Lin, T. Tumor-derived exosomal BCYRN1 activates WNT5A/VEGF-C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin. Transl. Med., 2021, 11(7), e497. doi: 10.1002/ctm2.497 PMID: 34323412
  56. Liu, T.; Li, P.; Li, J.; Qi, Q.; Sun, Z.; Shi, S.; Xie, Y.; Liu, S.; Wang, Y.; Du, L.; Wang, C. Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Mol. Ther. Oncolytics, 2021, 23, 163-180. doi: 10.1016/j.omto.2021.09.003 PMID: 34729394
  57. Godlewski, J.; Ferrer-Luna, R.; Rooj, A.K.; Mineo, M.; Ricklefs, F.; Takeda, Y.S.; Nowicki, M.O.; Salińska, E.; Nakano, I.; Lee, H.; Weissleder, R.; Beroukhim, R.; Chiocca, E.A.; Bronisz, A. MicroRNA signatures and molecular subtypes of glioblastoma: The role of extracellular transfer. Stem Cell Reports, 2017, 8(6), 1497-1505. doi: 10.1016/j.stemcr.2017.04.024 PMID: 28528698
  58. Wang, S.; Zhang, Z.; Gao, Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. Mol. Ther. Nucleic Acids, 2021, 23, 552-564. doi: 10.1016/j.omtn.2020.11.018 PMID: 33510943
  59. Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-Salas, I.; Dai, J.; Badwe, C.R.; Gril, B.; Tešić Mark, M.; Dill, B.D.; Molina, H.; Zhang, H.; Benito-Martin, A.; Bojmar, L.; Ararso, Y.; Offer, K.; LaPlant, Q.; Buehring, W.; Wang, H.; Jiang, X.; Lu, T.M.; Liu, Y.; Sabari, J.K.; Shin, S.J.; Narula, N.; Ginter, P.S.; Rajasekhar, V.K.; Healey, J.H.; Meylan, E.; Costa-Silva, B.; Wang, S.E.; Rafii, S.; Altorki, N.K.; Rudin, C.M.; Jones, D.R.; Steeg, P.S.; Peinado, H.; Ghajar, C.M.; Bromberg, J.; de Sousa, M.; Pisapia, D.; Lyden, D. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol., 2019, 21(11), 1403-1412. doi: 10.1038/s41556-019-0404-4 PMID: 31685984
  60. Chatterjee, S.; Chatterjee, A.; Jana, S.; Dey, S.; Roy, H.; Das, M.K.; Alam, J.; Adhikary, A.; Chowdhury, A.; Biswas, A.; Manna, D.; Bhattacharyya, A. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8+ T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis, 2021, 42(1), 38-47. doi: 10.1093/carcin/bgaa092 PMID: 32832992
  61. Liu, J.; Wu, S.; Zheng, X.; Zheng, P.; Fu, Y.; Wu, C.; Lu, B.; Ju, J.; Jiang, J. Immune suppressed tumor microenvironment by exosomes derived from gastric cancer cells via modulating immune functions. Sci. Rep., 2020, 10(1), 14749. doi: 10.1038/s41598-020-71573-y PMID: 32901082
  62. Mortezaee, K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci., 2021, 277, 119627. doi: 10.1016/j.lfs.2021.119627 PMID: 34004256
  63. Chen, J.; Song, Y.; Miao, F.; Chen, G.; Zhu, Y.; Wu, N.; Pang, L.; Chen, Z.; Chen, X. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8 + T cell exhaustion during metastasis. Cancer Sci., 2021, 112(9), 3437-3454. doi: 10.1111/cas.15033 PMID: 34152672
  64. Farhood, B.; Najafi, M.; Salehi, E.; Hashemi Goradel, N.; Nashtaei, M.S.; Khanlarkhani, N.; Mortezaee, K. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J. Cell. Biochem., 2019, 120(1), 71-76. doi: 10.1002/jcb.27594 PMID: 30203529
  65. Yen, E-Y.; Miaw, S.C.; Yu, J.S.; Lai, I.R. Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. Am. J. Cancer Res., 2017, 7(11), 2199-2208. PMID: 29218244
  66. Feng, L.; Weng, J.; Yao, C.; Wang, R.; Wang, N.; Zhang, Y.; Tanaka, Y.; Su, L. Extracellular vesicles derived from SIPA1high breast cancer cells enhance macrophage infiltration and cancer metastasis through Myosin-9. Biology, 2022, 11(4), 543. doi: 10.3390/biology11040543 PMID: 35453742
  67. Wang, F.; Niu, Y.; Chen, K.; Yuan, X.; Qin, Y.; Zheng, F.; Cui, Z.; Lu, W.; Wu, Y.; Xia, D. Extracellular Vesicle–Packaged circATP2B4 mediates M2 macrophage polarization via miR-532-3p/SREBF1 axis to promote epithelial ovarian cancer metastasis. Cancer Immunol. Res., 2023, 11(2), 199-216. doi: 10.1158/2326-6066.CIR-22-0410 PMID: 36512324
  68. Chen, J.; Zhang, K.; Zhi, Y.; Wu, Y.; Chen, B.; Bai, J.; Wang, X. Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin. Transl. Med., 2021, 11(9), e478. doi: 10.1002/ctm2.478 PMID: 34586722
  69. Wei, K.; Ma, Z.; Yang, F.; Zhao, X.; Jiang, W.; Pan, C.; Li, Z.; Pan, X.; He, Z.; Xu, J.; Wu, W.; Xia, Y.; Chen, L. M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942. Cancer Lett., 2022, 526, 205-216. doi: 10.1016/j.canlet.2021.10.045 PMID: 34838826
  70. Liu, W.; Long, Q.; Zhang, W.; Zeng, D.; Hu, B.; Liu, S.; Chen, L. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging, 2021, 13(15), 19760-19775. doi: 10.18632/aging.203388 PMID: 34388111
  71. Rabe, D.C.; Walker, N.D.; Rustandy, F.D.; Wallace, J.; Lee, J.; Stott, S.L.; Rosner, M.R. Tumor extracellular vesicles regulate macrophage-driven metastasis through CCL5. Cancers, 2021, 13(14), 3459. doi: 10.3390/cancers13143459 PMID: 34298673
  72. Li, H.; Yang, P.; Wang, J.; Zhang, J.; Ma, Q.; Jiang, Y.; Wu, Y.; Han, T.; Xiang, D. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J. Hematol. Oncol., 2022, 15(1), 2. doi: 10.1186/s13045-021-01223-x PMID: 34991659
  73. Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; O’Donnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191. doi: 10.1038/ncb3064 PMID: 25402683
  74. Gonda, A.; Zhao, N.; Shah, J.V.; Siebert, J.N.; Gunda, S.; Inan, B.; Kwon, M.; Libutti, S.K.; Moghe, P.V.; Francis, N.L.; Ganapathy, V. Extracellular vesicle molecular signatures characterize metastatic dynamicity in ovarian cancer. Front. Oncol., 2021, 11, 718408. doi: 10.3389/fonc.2021.718408 PMID: 34868914
  75. Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; Xiang, J.; Zhang, T.; Theilen, T.M.; García-Santos, G.; Williams, C.; Ararso, Y.; Huang, Y.; Rodrigues, G.; Shen, T.L.; Labori, K.J.; Lothe, I.M.B.; Kure, E.H.; Hernandez, J.; Doussot, A.; Ebbesen, S.H.; Grandgenett, P.M.; Hollingsworth, M.A.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Schwartz, R.E.; Matei, I.; Peinado, H.; Stanger, B.Z.; Bromberg, J.; Lyden, D. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol., 2015, 17(6), 816-826. doi: 10.1038/ncb3169 PMID: 25985394
  76. Gao, L.; Nie, X.; Gou, R.; Hu, Y.; Dong, H.; Li, X.; Lin, B. Exosomal ANXA2 derived from ovarian cancer cells regulates epithelial-mesenchymal plasticity of human peritoneal mesothelial cells. J. Cell. Mol. Med., 2021, 25(23), 10916-10929. doi: 10.1111/jcmm.16983 PMID: 34725902
  77. Yang, X.; Zhang, Y.; Zhang, Y.; Li, H.; Li, L.; Wu, Y.; Chen, X.; Qiu, L.; Han, J.; Wang, Z. Colorectal cancer-derived extracellular vesicles induce liver premetastatic immunosuppressive niche formation to promote tumor early liver metastasis. Signal Transduct. Target. Ther., 2023, 8(1), 102. doi: 10.1038/s41392-023-01384-w PMID: 36878919
  78. Brassart, B.; Da Silva, J.; Donet, M.; Seurat, E.; Hague, F.; Terryn, C.; Velard, F.; Michel, J.; Ouadid-Ahidouch, H.; Monboisse, J.C.; Hinek, A.; Maquart, F.X.; Ramont, L.; Brassart-Pasco, S. Tumour cell blebbing and extracellular vesicle shedding: Key role of matrikines and ribosomal protein SA. Br. J. Cancer, 2019, 120(4), 453-465. doi: 10.1038/s41416-019-0382-0 PMID: 30739912
  79. Zhang, P.; Wu, X.; Gardashova, G.; Yang, Y.; Zhang, Y.; Xu, L.; Zeng, Y. Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci. Transl. Med., 2020, 12(547), eaaz2878. doi: 10.1126/scitranslmed.aaz2878 PMID: 32522804
  80. Zhao, A.; Zhao, Z.; Liu, W.; Cui, X.; Wang, N.; Wang, Y.; Wang, Y.; Sun, L.; Xue, H.; Wu, L.; Cui, S.; Yang, Y.; Bai, R. Carcinoma-associated fibroblasts promote the proliferation and metastasis of osteosarcoma by transferring exosomal LncRNA SNHG17. Am. J. Transl. Res., 2021, 13(9), 10094-10111. PMID: 34650683
  81. Cai, Z.; Yang, F.; Yu, L.; Yu, Z.; Jiang, L.; Wang, Q.; Yang, Y.; Wang, L.; Cao, X.; Wang, J. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J. Immunol., 2012, 188(12), 5954-5961. doi: 10.4049/jimmunol.1103466 PMID: 22573809
  82. Shinde, A.; Paez, J.S.; Libring, S.; Hopkins, K.; Solorio, L.; Wendt, M.K. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis, 2020, 9(2), 16. doi: 10.1038/s41389-020-0204-5 PMID: 32054828
  83. Wen, S.W.; Sceneay, J.; Lima, L.G.; Wong, C.S.F.; Becker, M.; Krumeich, S.; Lobb, R.J.; Castillo, V.; Wong, K.N.; Ellis, S.; Parker, B.S.; Möller, A. The biodistribution and immune suppressive effects of breast cancer–derived exosomes. Cancer Res., 2016, 76(23), 6816-6827. doi: 10.1158/0008-5472.CAN-16-0868 PMID: 27760789
  84. Jiang, C.; Li, X.; Sun, B.; Zhang, N.; Li, J.; Yue, S.; Hu, X. Extracellular vesicles promotes liver metastasis of lung cancer by ALAHM increasing hepatocellular secretion of HGF. iScience, 2022, 25(3), 103984. doi: 10.1016/j.isci.2022.103984 PMID: 35281743
  85. Zhang, C.; Wang, X.Y.; Zhang, P.; He, T.C.; Han, J.H.; Zhang, R.; Lin, J.; Fan, J.; Lu, L.; Zhu, W.W.; Jia, H.L.; Zhang, J.B.; Chen, J.H. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis., 2022, 13(1), 57. doi: 10.1038/s41419-022-04506-4 PMID: 35027547
  86. Zou, Z.; Dai, R.; Deng, N.; Su, W.; Liu, P. Exosomal miR-1275 secreted by prostate cancer cells modulates osteoblast proliferation and activity by targeting the SIRT2/RUNX2 cascade. Cell Transplant., 2021, 30 doi: 10.1177/09636897211052977 PMID: 34689576
  87. Probert, C.; Dottorini, T.; Speakman, A.; Hunt, S.; Nafee, T.; Fazeli, A.; Wood, S.; Brown, J.E.; James, V. Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; A potential mechanism of metastasis. Oncogene, 2019, 38(10), 1751-1763. doi: 10.1038/s41388-018-0540-5 PMID: 30353168
  88. Rode, M.P.; Silva, A.H.; Cisilotto, J.; Rosolen, D.; Creczynski-Pasa, T.B. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell. Signal., 2021, 87, 110113. doi: 10.1016/j.cellsig.2021.110113 PMID: 34371055
  89. Mo, C.; Huang, B.; Zhuang, J.; Jiang, S.; Guo, S.; Mao, X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin. Transl. Med., 2021, 11(8), e493. doi: 10.1002/ctm2.493 PMID: 34459124
  90. Li, X-Q. Extracellular vesicle-packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells. Cancer Res., 2022, 82(8), 1560-1574.
  91. Jianjiao, N. Tumour-derived exosomal lncRNA-SOX2OT promotes bone metastasis of non-small cell lung cancer by targeting the miRNA-194-5p/RAC1 signalling axis in osteoclasts. Cell Death Dis., 2021, 12(7)
  92. Wu, K.; Feng, J.; Lyu, F.; Xing, F.; Sharma, S.; Liu, Y.; Wu, S.Y.; Zhao, D.; Tyagi, A.; Deshpande, R.P.; Pei, X.; Ruiz, M.G.; Takahashi, H.; Tsuzuki, S.; Kimura, T.; Mo, Y.; Shiozawa, Y.; Singh, R.; Watabe, K. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat. Commun., 2021, 12(1), 5196. doi: 10.1038/s41467-021-25473-y PMID: 34465793
  93. Li, C.H.; Palanisamy, K.; Li, X.; Yu, S.H.; Wang, I.K.; Li, C.Y.; Sun, K.T. Exosomal tumor necrosis factor-α from hepatocellular cancer cells (Huh-7) promote osteoclast differentiation. J. Cell. Biochem., 2021, 122(11), 1749-1760. doi: 10.1002/jcb.30127 PMID: 34383347
  94. Wang, M.; Zhao, M.; Guo, Q.; Lou, J.; Wang, L. Non-small cell lung cancer cell–derived exosomal miR-17-5p promotes osteoclast differentiation by targeting PTEN. Exp. Cell Res., 2021, 408(1), 112834. doi: 10.1016/j.yexcr.2021.112834 PMID: 34537206
  95. Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Jørgen Labori, K.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335. doi: 10.1038/nature15756 PMID: 26524530
  96. Koide, R.; Hirane, N.; Kambe, D.; Yokoi, Y.; Otaki, M.; Nishimura, S.I. Antiadhesive nanosome elicits role of glycocalyx of tumor cell-derived exosomes in the organotropic cancer metastasis. Biomaterials, 2022, 280, 121314. doi: 10.1016/j.biomaterials.2021.121314 PMID: 34906850
  97. Najafi, S.; Majidpoor, J.; Mortezaee, K. Extracellular vesicle–based drug delivery in cancer immunotherapy. Drug Deliv. Transl. Res., 2023, 13(11), 2790-2806. doi: 10.1007/s13346-023-01370-3 PMID: 37261603
  98. Tian, W.; Yang, X.; Yang, H.; Lv, M.; Sun, X.; Zhou, B. Exosomal miR-338-3p suppresses non-small-cell lung cancer cells metastasis by inhibiting CHL1 through the MAPK signaling pathway. Cell Death Dis., 2021, 12(11), 1030. doi: 10.1038/s41419-021-04314-2 PMID: 34718336
  99. Wen, H.; Liu, Z.; Tang, J.; Bu, L. MiR-185-5p targets RAB35 gene to regulate tumor cell-derived exosomes-mediated proliferation, migration and invasion of non-small cell lung cancer cells. Aging, 2021, 13(17), 21435-21450. doi: 10.18632/aging.203483 PMID: 34500436
  100. Lopatina, T.; Grange, C.; Cavallari, C.; Navarro-Tableros, V.; Lombardo, G.; Rosso, A.; Cedrino, M.; Pomatto, M.A.C.; Koni, M.; Veneziano, F.; Castellano, I.; Camussi, G.; Brizzi, M.F. Targeting IL-3Rα on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogenesis, 2020, 9(10), 90. doi: 10.1038/s41389-020-00274-y PMID: 33040091
  101. Wei, L.; Wang, G.; Yang, C.; Zhang, Y.; Chen, Y.; Zhong, C.; Li, Q. MicroRNA-550a-3-5p controls the brain metastasis of lung cancer by directly targeting YAP1. Cancer Cell Int., 2021, 21(1), 491. doi: 10.1186/s12935-021-02197-z PMID: 34530822
  102. Wang, M.; Cai, W.; Yang, A.J.; Wang, C.Y.; Zhang, C.L.; Liu, W.; Xie, X.F.; Gong, Y.Y.; Zhao, Y.Y.; Wu, W.C.; Zhou, Q.; Zhao, C.Y.; Dong, J.F.; Li, M. Gastric cancer cell-derived extracellular vesicles disrupt endothelial integrity and promote metastasis. Cancer Lett., 2022, 545, 215827. doi: 10.1016/j.canlet.2022.215827 PMID: 35842018
  103. Wang, S.; Li, F.; Ye, T.; Wang, J.; Lyu, C.; Qing, S.; Ding, Z.; Gao, X.; Jia, R.; Yu, D.; Ren, J.; Wei, W.; Ma, G. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med., 2021, 13(615), eabb6981. doi: 10.1126/scitranslmed.abb6981 PMID: 34644149
  104. Tang, K.; Zhang, Y.; Zhang, H.; Xu, P.; Liu, J.; Ma, J.; Lv, M.; Li, D.; Katirai, F.; Shen, G.X.; Zhang, G.; Feng, Z.H.; Ye, D.; Huang, B. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat. Commun., 2012, 3(1), 1282. doi: 10.1038/ncomms2282 PMID: 23250412
  105. Hu, S.; Ma, J.; Su, C.; Chen, Y.; Shu, Y.; Qi, Z.; Zhang, B.; Shi, G.; Zhang, Y.; Zhang, Y.; Huang, A.; Kuang, Y.; Cheng, P. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater., 2021, 135, 567-581. doi: 10.1016/j.actbio.2021.09.003 PMID: 34506976
  106. Najafi, S.; Mortezaee, K. Advances in dendritic cell vaccination therapy of cancer. Biomed. Pharmacother., 2023, 164, 114954. doi: 10.1016/j.biopha.2023.114954 PMID: 37257227
  107. Zhang, D.X.; Dang, X.T.T.; Vu, L.T.; Lim, C.M.H.; Yeo, E.Y.M.; Lam, B.W.S.; Leong, S.M.; Omar, N.; Putti, T.C.; Yeh, Y.C.; Ma, V.; Luo, J.Y.; Cho, W.C.; Chen, G.; Lee, V.K.M.; Grimson, A.; Le, M.T.N. αvβ1 integrin is enriched in extracellular vesicles of metastatic breast cancer cells: A mechanism mediated by galectin-3. J. Extracell. Vesicles, 2022, 11(8), e12234. doi: 10.1002/jev2.12234 PMID: 35923105
  108. Peng, B.; Nguyen, T.M.; Jayasinghe, M.K.; Gao, C.; Pham, T.T.; Vu, L.T.; Yeo, E.Y.M.; Yap, G.; Wang, L.; Goh, B.C.; Tam, W.L.; Luo, D.; Le, M.T.N. Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy. J. Extracell. Vesicles, 2022, 11(4), e12187. doi: 10.1002/jev2.12187 PMID: 35430766
  109. Pan, R.; He, T.; Zhang, K.; Zhu, L.; Lin, J.; Chen, P.; Liu, X.; Huang, H.; Zhou, D.; Li, W.; Yang, S.; Ye, G. Tumor-targeting extracellular vesicles loaded with siS100A4 for suppressing postoperative breast cancer metastasis. Cell. Mol. Bioeng., 2023, 16(2), 117-125. doi: 10.1007/s12195-022-00757-5 PMID: 37096069

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024