Anomalous heat transfer enhancement in separated flow over a zigzag-shaped dense package of inclined grooves in a channel wall at different temperature boundary conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Rapid development of the anomalous enhancement of separated turbulent Re = 6000 air flow and heat transfer in an in-line single-row package of 31 inclined grooves, 0.2 in dimensionless depth, in a singled-out longitudinal region of the wall of a narrow channel is studied. It is due to the interference of vortex wakes behind the grooves and the acceleration in the channel flow core with the formation of a zone of ultrahigh longitudinal velocity. The wave-shaped parameter characteristics are stabilized in the region of approximately 15th groove, whereupon the oscillation amplitudes are moderately reduced. The return flows in the grooves are enhanced with distance from the entry section, the minimum negative friction diminishing from −2 to −4. The total relative heat removal from the structured region increases at q = const by a factor of approximately 2.75 and by the factor of two at T = const with increase in the relative hydraulic losses by the factor of 1.7, as compared with the case of a plane–parallel channel. The relative heat removal from the surface bounded by the contour of the 20th inclined groove amounts to 3.7 (q = const) with increase in the hydraulic losses by the factor of 2.2. An increase in the local maximum of the longitudinal velocity up to a factor of 1.5, as compared with the mean-mass velocity, can be observable.

Texto integral

Acesso é fechado

Sobre autores

S. Isaev

St. Petersburg State Marine Technical University; St. Petersburg State University of Civil Aviation

Autor responsável pela correspondência
Email: isaev3612@yandex.ru
Rússia, St. Petersburg, 190121; St. Petersburg, 196210

O. Mil’man

Scientific and Production Implementation Company "Turbokon"

Email: isaev3612@yandex.ru
Rússia, Kaluga, 248010

A. Klyus

St. Petersburg State University of Civil Aviation

Email: isaev3612@yandex.ru
Rússia, St. Petersburg, 196210

D. Nikushchenko

a St. Petersburg State Marine Technical University

Email: isaev3612@yandex.ru
Rússia, St. Petersburg, 190121

D. Khmara

St. Petersburg State Marine Technical University

Email: isaev3612@yandex.ru
Rússia, St. Petersburg, 190121

L. Yunakov

Baltic State Technical University VOENMEKH

Email: isaev3612@yandex.ru
Rússia, St. Petersburg, 190005

Bibliografia

  1. Жукаускас А., Макарявичус В., Шланчяускас А. Теплоотдача пучков труб в поперечном потоке жидкости. Вильнюс: Минтис, 1968. 192 с.
  2. Isaev S.A., Leontiev A.I., Zhukova Yu.V., Baranov P.A., Gotovskii M.A., Usachov A.E. Numerical simulation of vortex heat transfer enhancement in transformer oil flow in a channel with one-row spherical dimples // Heat Transfer Research. 2011. V. 42. I. 7. P. 613–628.
  3. Исаев С.А., Леонтьев А.И., Готовский М.А., Усачов А.Е., Жукова Ю.В. Анализ повышения теплогидравлической эффективности при движении трансформаторного масла в миниканале с однорядным пакетом сферических и овальных лунок на нагретой стенке // Теплофизика высоких температур. 2013. Т. 51. № 6. С. 884–890.
  4. Исаев С.А., Леонтьев А.И., Корнев Н.В., Хассель Э., Чудновский Я.П. Интенсификация теплообмена при ламинарном и турбулентном течении в узком канале с однорядными овальными лунками // Теплофизика высоких температур. 2015. Т. 53. № 3. С. 390–402.
  5. Исаев С.А. Генезис аномальной интенсификации отрывного течения и теплообмена в наклонных канавках на структурированных поверхностях // Известия РАН. Механика жидкости и газа. 2022. № 5. С. 13–24.
  6. Исаев С.А. Аэрогидродинамические механизмы интенсификации физико-энергетических процессов на структурированных энергоэффективных поверхностях с вихревыми генераторами // Теплофизика и аэромеханика. 2023. Т. 30. № 1. С. 83–88.
  7. Isaev S., Leontiev A., Milman O., Nikushchenko D., Egorova A. Energy-efficient surface of air capacitors with inclined single-row oval-trench dimples and protrusions // Journal of Physics: Conference Series. 2020. № 1565. Р. 012001. https://doi.org/10.1088/1742-6596/1565/1/012001
  8. Исаев С.А., Леонтьев А.И., Мильман О.О., Никущенко Д.В., Попов И.А. Энергоэффективные поверхности с многорядными наклонными овально-траншейными лунками для воздушных конденсаторов // Известия РАН. Энергетика. 2020. № 4. С 3–10.
  9. Isaev S.A., Popov I.A., Mikheev N.I., Guvernyuk S.V., Nikushchenko D.V., Sudakov A.G. Promising dimple technologies of vortex heat and mass transfer enhancement in energy and microelectronics // Journal of Physics: Conference Series. 2020. V. 1675. No. 012004. 7 p. https://doi.org/10.1088/1742-6596/1675/1/012004
  10. Isaev S.A., Guvernyuk S.V., Mikheev N.I., Popov I.A., Nikushchenko D.V. Numerical and experimental study of abnormal enhancement of separated turbulent flow and heat transfer in inclined oval-trench dimples on the plate and on the narrow channel wall // Journal of Physics: Conference Series. 2021. № 2039. Р. 012009. https://doi.org/10.1088/1742-6596/2039/1/012009
  11. Isaev S.A., Popov I.A., Mikheev N.I., Guvernyuk S.V., Zubin M.A., Nikushchenko D.V., Sudakov A.G. Vortex heat transfer enhancement in the separated flow near structured dimpled surfaces // Journal of Physics: Conference Series. 2021. № 2057. Р. 012002. https://doi.org/10.1088/1742-6596/2057/1/012002
  12. Isaev S.A., Mikheev N.I., Dushin N.S., Goltsman A.E., Nikushchenko D.V. and Sudakov A.G. Vortex heat transfer enhancement on energy-efficient surfaces structured by inclined trench dimples // Journal of Physics: Conference Series. 2021. № 2119. Р. 12016. https://doi.org/10.1088/1742-6596/2119/1/012016
  13. Isaev S., Leontiev A., Gritskevich M., Nikushchenko D., Guvernyuk S., Sudakov A., Chung K.-M., Tryaskin N., Zubin M., Sinyavin A. Development of energy efficient structured plates with zigzag arrangement of multirow inclined oval trench dimples // Int. J. Thermal Sciences. 2023. V. 184. No.107988.
  14. Исаев С.А., Судаков А.Г., Никущенко Д.В., Харченко В.Б., Юнаков Л.П. Влияние граничных условий на моделирование аномальной интенсификации турбулентного теплообмена в наклонной канавке на стенке узкого канала // Известия РАН. Механика жидкости и газа. 2023. № 6. С. 38–47. EDN: RBCVPD. https://doi.org/10.31857/S1024708423600367
  15. Menter F.R. Zonal two equation k–ω turbulence models for aerodynamic flows // AIAA Paper. 1993. No. 93-2906. 21 p.
  16. Isaev S.A., Baranov P.A., Usachov A.E. Multiblock Computational Technologies in the VP2/3 Package on Aerothermodynamics; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013.
  17. Isaev S.A., Sudakov A.G., Baranov P.A., Zhukova Yu.V., Usachov A.E. Analysis of errors of multiblock computational technologies by the example of calculating a circulation flow in a square cavity with a moving cover at Re = 1000 // Journal of Engineering Physics and Thermophysics. 2013. V. 86. I. 5. P. 1134–1150.
  18. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. Thesis submitted for the Degree of Doctor of Philosophy of the University of London and Diploma of Imperial College of Science, Technology and Medicine, 1996. 394 p.
  19. Van Doormaal J.P., Raithby G.D. Enhancement of the SIMPLE method for predicting incompressible fluid flow // Numerical Heat Transfer. 1984. V. 7. No. 2. P. 147–163.
  20. Rhie C.M., Chow W.L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation // AIAA J. 1983. V. 21. P. 1525–1532.
  21. Pascau A., Garcia N. Consistency of SIMPLEC scheme in collocated grids // Proc. V. European Conf. on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal, 2010. 12 p.
  22. Leonard B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comp. Meth. Appl. Mech. Eng. 1979. V. 19. No. 1. P. 59–98.
  23. Van Leer B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method // J. Comp. Phys. 1979. V. 32. P. 101–136.
  24. Saad Y. Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia, 2003. 567 p.
  25. Demidov D. AMGCL: C++ library for solving large sparse linear systems with algebraic multigrid method. http://amgcl.readthedocs.org/
  26. Исаев С.А., Гувернюк С.В., Никущенко Д.В., Судаков А.Г., Синявин А.А., Дубко Е.Б. Взаимосвязь аномальной интенсификации отрывного течения и экстраординарных перепадов давления в канавке на пластине при изменении угла наклона от 0 до 90° // Письма в журнал технической физики. 2023. Т. 49. Вып. 15. С. 39–42.
  27. Isaev S., Gritckevich М., Leontiev А., Popov I. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall // Acta Astronautica. 2019. V. 163 (Part. A). P. 202–207.
  28. Isaev S.A., Leontiev A.I., Milman O.O., Popov I.A., Sudakov A.G. Influence of the depth of single-row oval-trench dimples inclined to laminar air flow on heat transfer enhancement in a narrow micro-channel // International Journal of Heat and Mass Transfer. 2019. V. 134. P. 338–358.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. A narrow channel with 31 inclined grooves with a system of Cartesian coordinates x, y, z (a) and zigzag corridor packages of grooves on the channel wall (b). Longitudinal section of grooves in the channel in the middle of transitions from spherical segments to trenches (c). Multiblock computational grids on a structured section of the wall (d). 1 is a detailed Cartesian grid covering the grooves; 2 is an O–type curved grid in the vicinity of each groove; 3 is an oblique “patch” grid superimposed on the central zone of the groove. The upper wall of the channel is not shown.

Baixar (309KB)
3. Fig. 2. Comparison of the relative friction distributions f/fp(x) in three longitudinal sections of the channel (a) with 31 grooves and in enlarged fragments in the inlet (b), middle (c) and outlet (d) sections. Curves: 1 – z = 1.245, 2 – (-1.245), 3 – 0.

Baixar (563KB)
4. Fig. 3. Comparison of the distributions of the static pressure drop P–Ppl(x) in three longitudinal sections of the channel (a) with 31 grooves and in enlarged fragments in the inlet (b), middle (c) and outlet (d) sections: z on curves 1-3 is the same as in Fig. 2.

Baixar (507KB)
5. Fig. 4. Comparison of the Num/Numpl distributions integrated along the transverse (a, c, e) and longitudinal (b) bands on the heated channel wall under boundary conditions q = const (1) and T = const (2). The enlarged fragments of Num/Numpl(x) correspond to the input (c), the middle (d) and exit (e) sections of the channel.

Baixar (318KB)
6. Fig. 5. Comparison of local Nu/Nupl distributions along the longitudinal section at z = 1.245(a) for boundary conditions q = const(1) and T = const(2). The enlarged fragments of Num/Numpl(x) correspond to the same channel sections as in Fig. 4.

Baixar (489KB)
7. Fig. 6. Comparison of local Nu/Nupl distributions along the longitudinal section at z = 0(a) for boundary conditions q = const(1) and T = const(2). The enlarged fragments of Num/Numpl(x) correspond to the same channel sections as in Fig. 4.

Baixar (517KB)
8. Fig. 7. Comparison of local Nu/Nupl distributions along the longitudinal section at z = -1.245(a) for boundary conditions q = const(1) and T = const(2). The enlarged fragments of Num/Numpl(x) correspond to the same channel sections as in Fig. 4.

Baixar (474KB)
9. Fig. 8. Comparison of the surface distributions of relative friction f/fpl (a–c) and relative static pressure drops P–Ppl (d–e) for the first (a, d), 20th (b, e) and 30th (c, e) grooves.

Baixar (475KB)
10. Fig. 9. The ratio of the surface distributions of relative friction F/FPL (a), pressure drop P–ppl (B) and relative temperature TW/twpl (c) at Q = const in the middle section of the selected groove: 1 – 1st; 2 – 5th; 3 – 10th; 4 – 15th; 5 – 20th; 6 – 25th-p. 7 – 30.

Baixar (192KB)
11. Fig. 10. Comparison of the surface distributions of the relative Nusselt number Nu/Nupl under boundary conditions q = const (a–b) and T = const (d–e) for the same grooves as in Fig. 8.

Baixar (490KB)
12. Fig. 11. Comparison of the distribution of local relative Nusselt numbers nu/nupl(s) in the middle sections of the grooves (A, B) and integrated along the transverse and longitudinal bands num/numpl along the longitudinal S (V, g) and transverse T(D, E) coordinates of the selected grooves under boundary conditions Q = const (a, c, e) and T = const (B, D, E): 1 – 1st; 2 – 5th; 3 – 10th; 4 – 15th; 5 – 20th; 6 – 25th; 7– 30th.

Baixar (364KB)
13. Fig. 12. Dependences on the longitudinal coordinates of the centers 1-, 5-, 10-, 15-, 20-, 25-, 30- relative total heat transfer grooves Numm/Nummpl (marked with round dots) for surfaces bounded by contours of selected grooves (curves 1, 2), local hydraulic losses of sections with selected grooves (curve 3, marked with square dots) and the thermal and hydraulic efficiency of the TGE of selected local surface areas (curves 4, 5, marked with rhombic dots) at q = const (1 – red dots) and T = const (2 – green dots). It also shows the dependence of the increasing static pressure drops ∆P (curve 6 with round dots), presented in Table 2.

Baixar (114KB)
14. Fig. 13. Transformation of the profiles of the longitudinal component of the velocity U(Z) in the longitudinal sections of the channel corresponding to the centers of the selected grooves, at U = 0.5: 1 – 1st; 2 – 5th; 3 – 10th; 4 – 15th; 5 – 20th; 6 – 25th; 7th – 30th.

Baixar (96KB)
15. Fig. 14. Evolution of the profiles of the longitudinal velocity component U(z, y) in the longitudinal sections of the channel corresponding to the centers of the selected grooves 1 (a), 5 (b), 10 (c), 15 (d), 20 (e) and 30- th (e).

Baixar (248KB)
16. Fig. 15. Comparison of the dependencies on the vertical coordinate of the Cartesian velocity components U (a, b), V(c), W(d), k(e), and Rmt(e) in the centers of the transition sections from the entrance spherical segments to the trench inserts of the selected grooves: 1 – 1st; 2 – 5th; 3rd – 10th; 4th – 15th; 5th - 20th; 6th - 25th; 7th - 30th. The graphs in Fig. 12b are plotted on a large scale.

Baixar (327KB)
17. Fig. 16. comparison of dependences on the vertical coordinate of Cartesian speed components U (A), V (B), W (C), k (D), Reµt (E) in the Centers of trench inserts of selected grooves: 1 – 1st; 2-5th; 3 – 10th; 4-15th; 5 – 20th; 6-25th; 7 – 30th.

Baixar (311KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024