Diagnostics of the ionization processes in hydrocarbon flame with the use of the current-voltage characteristics
- Authors: Polyanskii V.А.1, Pankrat’eva I.L.1
-
Affiliations:
- Moscow State University
- Issue: No 1 (2024)
- Pages: 77-82
- Section: Articles
- URL: https://gynecology.orscience.ru/1024-7084/article/view/672131
- DOI: https://doi.org/10.31857/S1024708424010049
- EDN: https://elibrary.ru/sduwdg
- ID: 672131
Cite item
Abstract
The possibility of estimating the ionization parameters of high-temperature gas mixtures formed as a result of combustion processes is considered on the basis of the current-voltage characteristics measured using electrodes that generate an external electric field in the media under consideration.
Full Text

About the authors
V. А. Polyanskii
Moscow State University
Author for correspondence.
Email: ilpan@imec.msu.ru
Institute of Mechanics
Russian Federation, MoscowI. L. Pankrat’eva
Moscow State University
Email: ilpan@imec.msu.ru
Institute of Mechanics
Russian Federation, MoscowReferences
- Karnani S, Dunn-Rankin D. Detailed characterization of DC electric field effects on small non-premixed flames // Combust. Flame. 2015. V. 162(7). P. 2865–2872.
- Gan Y.H., Wang M., Luo Y.L., Chen X.W., Xu J.L. Effects of direct-current electric fields on flame shape and combustion characteristics of ethanol in small scale // Adv. Mech. Eng. 2016. V. 8(1). P. 1–14.
- Власов П.А., Панкратьева И.Л., Полянский В.А. Исследование ЭГД-структуры течения высокотемпературной газовой смеси с неоднородным источником заряженных частиц // Изв. РАН. МЖГ. 2022. № 6. С. 94–100.
- Власов П.А., Панкратьева И.Л., Полянский В.А. Исследование механизмов взаимодействия углеводородного пламени с электрическим полем // Изв. РАН. МЖГ. 2023. № 4. С. 108–116.
- Pankratieva I.L., Polyanskii V.A. Modeling electrohydrodynamic flows in slightly conducting liquids // J. Applied Mechanics and Technical Physics. 1995. V. 36. № 4. P. 513–519.
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. Volt-ampere characteristics for three different configurations of the torch by width and intensity (step height) of the ionization source W. Lines: 1 — W = 10, 0.2 < x < 0.8; 2 — W = 5, 0.2 < x < 0.8; 3 — W = 10, 0.4 < x < 0.6; 4 — W = 6, 0.4 < x < 0.6; 5 — W = 4, 0.4 < x < 0.6; 6 – W = 10, 0.47 < x < 0.53; 7 – W = 4, 0.47 < x < 0.53.
Download (86KB)
3.
Fig. 2. Dependence of the saturation current on the intensity of the source of charged particles W for different widths of the burning region L. Lines: 1 — L = 0.06, 2 — L = 0.2, 3 — L = 0.6, 4 — L = 1.
Download (73KB)
4.
Fig. 3. Dependence of saturation current Jsat on the characteristic size of the source of charged particles L for different W. Lines: 1 – W = 2, 2 – W = 4, 3 – W = 6, 4 – W = 8, 5 – W = 10.
Download (85KB)
5.
Fig. 4. Dependence of saturation current Jsat on the product LW (line 1); line 2 – value A in relation (2.1) for different values of LW.
Download (60KB)
6.
Fig. 5. Electrodes are completely immersed in the combustion region. Distributions of charged particle concentrations and volume charge q in a weak applied field (W = 4, L = 1, Fw = –100). Lines: 1 — n1, 2 — n2, 3 — q.
Download (68KB)
7.
Fig. 6. Electrodes are completely immersed in the combustion region. Distributions of electric potential F (line 1) and field strength E (line 2) in a weak applied field (W = 4, L = 1, Fw = –100).
Download (61KB)
8.
Fig. 7. Volt-ampere characteristics of electrodes completely immersed in the ionization region (W = 4, L = 1).
Download (55KB)
