The content of endogenous hormones in explants and calluses of Lavandula angustifolia Mill. at the initial stages of in vitro culture

封面

如何引用文章

全文:

详细

The content of endogenous hormones (auxin IAA, cytokinines, ABA) in explants of various types (segments of leaf, bud, stem), primary calluses induced from them, as well as morphogenic and non-morphogenic calluses at the initial stages of in vitro culture by the immunoassay method was studied for the first time for Lavandula angustifolia Mill. The maximum value of hormone levels in such explants as segments of bud was shown. An increase in the content of hormones in primary calluses was revealed in comparison with similar characteristics in all types of explants. The higher level of the active form of cytokinin (trans-zeatin) and ABA, as well as the lower level of the inactive form of cytokinin (zeatin-nucleotide) and auxin IAA were identified in morphogenic callus compared with non-morphogenic callus. It is suggested that the content of endogenous hormones in explants and calluses of L. angustifolia is due to their histological status. The conclusion is made about the unified histophysiological mechanisms of callusogenesis and morphogenesis in vitro in the studied plant.

全文:

受限制的访问

作者简介

N. Kruglova

Research Institute of Agriculture of Crimea; Ufa Institute of biology – subdivision of the UFRC RAS

编辑信件的主要联系方式.
Email: kruglova@anrb.ru
俄罗斯联邦, Kievskaya str., 150, Simferopol, 295043; pr. Oktyabrya, 69, Ufa, 450054

I. Galin

Ufa Institute of biology – subdivision of the UFRC RAS

Email: kruglova@anrb.ru
俄罗斯联邦, pr. Oktyabrya, 69, Ufa, 450054

N. Yegorova

Research Institute of Agriculture of Crimea

Email: kruglova@anrb.ru
俄罗斯联邦, Kievskaya str., 150, Simferopol, 295043

参考

  1. Егорова Н. А. Биотехнология эфиромасличных растений: создание новых форм и микроразмножение in vitro. Симферополь: ИД “Автограф”, 2021. 315 с.
  2. Зинатуллина А. Е. Cтруктурные особенности клеток эксплантов in vivo и формирование морфогенных каллусов in vitro (обзор) // Биомика. 2021. Т. 13. № 1. С. 8–19. doi: 10.31301/2221-6197.bmcs.2021-2.
  3. Зинатуллина А. Е. Формирование морфогенетических очагов как основа гемморизогенеза in vitro в зародышевых каллусах пшеницы // Экобиотех. 2023. Т. 6. № 2. С. 81–90. doi: 10.31163/2618-964X-2023-6-2-81-90.
  4. Калинин Ф. Л., Сарнацкая В. В., Полищук В. Е. Методы культуры тканей в физиологии и биохимии. Киев: Наукова думка, 1980. 468 с.
  5. Круглова Н. Н. Каллусообразование и каллусогенез in vitro у злаков: роль гормонального баланса // Изв. Уфимск. науч. центра РАН. 2022. № 1. С. 52–59. doi: 10.31040/2222-8349-2022-0-1-52-59.
  6. Круглова Н. Н., Зинатуллина А. Е., Егорова Н. А. Морфогенез in vitro в каллусах лаванды узколистной Lavandula angustifolia Mill.: гистологические аспекты // Изв. РАН. Сер. биол. 2024. 2024. № 3. С. 297-306. EDN: VBEPNU. doi: 10.31857/S1026347024030014.
  7. Круглова Н. Н., Сельдимирова О. А., Зинатуллина А. Е., Веселов Д. С. Абсцизовая кислота в системах культуры in vitro эксплантов // Изв. Уфимск. науч. центра РАН. 2018. № 2. С. 55–60. doi: 10.31040/2222-8349-2018-0-2-55-60.
  8. Bidabadi S. S., Jain S. M. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration // Plants. 2020. V. 9. doi: 10.3390/plants9060702.
  9. Сosiс T., Raspor M. The Role of Auxin and Cytokinin Signaling Components in de novo Shoot Organogenesis // Aftab T. (ed.) Auxins, Cytokinins and Gibberellins Signaling in Plants. Signaling and Communication in Plants. Springer, Cham, 2022. doi: 10.1007/978-3-031-05427-3_3.
  10. Dong Y., Zhang W., Li J., Wang D., Bai H., Li H., Shi L. The transcription factor LaMYC4 from lavender regulates volatile terpenoid biosynthesis // BMC Plant Biol. 2022. V. 22. Iss. 289. doi: 10.1186/s12870-022-03660-3.
  11. Efferth T. Biotechnology Applications of Plant Callus Cultures // Engineering. 2019. V. 5. P. 50–59. doi: 10.1016/j.eng.2018.11.006.
  12. Feher A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? // Front. Plant Sci. 2019. V. 26. doi: 10.3389/fpls.2019.00536.
  13. Feher A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli // Int. J. Mol. Sci. 2023. V. 24. Iss. 17. doi: 10.3390/ijms241713122.
  14. Fidler J., Graska J., Gietler M., Nykiel M., Prabucka B., Rybarczyk-Plonska A., Muszynska E., Morkunas I., Labudda M. PYR/PYL/RCAR Receptors Play a Vital Role in the Abscisic-Acid-Dependent Responses of Plants to External or Internal Stimuli // Cells. 2022. V. 11. Iss. 8. doi: 10.3390/cells11081352.
  15. Hisano H., Matsuura T., Mori I. C., Yamane M., Sato K. Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley // Plant Physiol. Biochem. 2016. V. 99. P. 66-72. doi: 10.1016/j.plaphy.2015.12.005.
  16. Ikeuchi M., Iwase A., Ito T., Tanaka H., Favero D. S., Kawamura A., Sakamoto S., Wakazaki M., Tameshige T., Fujii H., Hashimoto N., Suzuki T., Hotta K., Toyooka K., Mitsuda N., Sugimoto K. Wound-inducible WUSEL-RELEATED HOMEOBOX 13 is required for callus growth and organ reconnection // Plant Physiol. 2022. V. 188. Iss. 1. P. 425–441. doi: 10.1093/plphys/kiab510.
  17. Ikeuchi M., Iwase A., Rymen B., Lambolez A., Kojima M., Takebayashi Y., Heyman J., Watanabe S., Seo M., De Veylder L., Sakakibara H., Sugimoto K. Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes // Plant Physiol. 2017. V. 175. Iss. 3. P. 1158–1174. doi: 10.1104/pp.17.01035.
  18. Ikeuchi M., Favero D. S., Sakamoto Y., Iwase A., Coleman D., Rymen B., Sugimoto K. Molecular Mechanisms of Plant Regeneration // Annu. Rev. Plant Biol. 2019. V. 70. P. 377–406. doi: 10.1146/annurev-arplant-050718-100434.
  19. Karami O., Philipsen C., Rahimi A., Nurillah A. R., Boutilier K., Offringa R. Endogenous auxin maintains embryonic cell identy and promotes somatic embryo development in Arabidopsis // Plant J. 2023. V. 113. Iss. 1. P. 7–22. doi: 10.1111/tpj.16024.
  20. Kharel P., Creech M. R., Nguyen C. D., Vendrame W. A., Munoz P. P., Huo H. Effect of explant type, culture medium, and BAP concentration on in vitro shoot development in highbush blueberry (Vaccinium corymbosum L.) cultivars // In Vitro Cell. Dev. Biol. Plant. 2022. V. 58. P. 1057–1065. doi: 10.1007/s11627-022-10299-0.
  21. Kruglova N. N., Titova G. E., Seldimirova O. A., Zinatullina A. E. Cytophysiological features of the Cereal-based Experimental System “Embryo In Vivo – Callus In Vitro” // Russ. J. Dev. Biol. 2021. V. 52. № 4. P. 199–214. doi: 10.1134/S1062360421040044.
  22. Kruglova N., Zinatullina A., Yegorova N. Histological Approach to the Study of Morphogenesis in Callus Cultures In Vitro: A review // Int. J. Plant Biol. 2023. V. 14. Iss. 2. P. 533–545. doi: 10.3390/ijpb14020042.
  23. Kudoyarova G. R., Korobova A. V., Akhiyarova G. R., Arkhipova T. N., Zaytsev D.Yu., Prinsen E., Egutkin N. L., Medvedev S.S., Veselov S.Yu. Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) // J. Exp. Bot. 2014. V. 65. P. 2287–2294. doi: 10.1093/jxb/eru113.
  24. Leelavathi D., Raajasubramanian D., Ramu L., Haseena R., Midhila P., GovindaRaju M.V., Lavanya G., Chetan H. C., Narendra K. Lavandula angustifolia L. plants regeneration from in vitro leaf explants-derived callus as conservation strategy // Biotecn. Veg. 2020. V. 20. № 2. P. 75–82.
  25. Lu H., Xu P., Hu K., Xiao Q., Wen J., Yi B., Ma C., Tu J., Fu T., Shen J. Transcriptome profiling reveals cytokinin promoted callus regeneration in Brassica juncea // Plant Cell Tiss. Organ Cult. 2020. V. 141. P. 191–206. doi: 10.1007/s11240-020-01779-5.
  26. Mostafa H. H.A., Wang H., Song J., Li X. Effects of genotypes and explants on garlic callus production and endogenous hormones // Sci Rep. 2020. V. 10. Iss. 1. doi: 10.1038/s41598-020-61564-4.
  27. Murashige Т., Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures // Physiol. Plant. 1962. V. 15. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.
  28. Ohbayashi I., Sakamoto Y., Kuwae H., Kasahara H., Sugiyama M. Enhancement of shoot regeneration by treatment with inhibitors of auxin biosynthesis and transport during callus induction in tissue culture of Arabidopsis thaliana // Plant Biotechnol. 2022. V. 39. Iss. 1. P. 43–50. doi: 10.5511/plantbiotechnology.21.1225a.
  29. Ozyigit I. I., Dogan I., Hocaoglu-Ozyigit A., Yalcin B., Erdogan A., Yalcin I. E., Cabi E., Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications // Front. Plant Sci. 2023. V. 14. doi: 10.3389/fpls.2023.1132555.
  30. Raspor M., Motyka V., Kaleri A. R., Ninkovic S., Tubic L., Cingel A., Cosic T. Integrating the Roles for Cytokinin and Auxin in De Novo Shoot Organogenesis: From Hormone Uptake to Signaling Outputs // Int. J. Mol. Sci. 2021. V. 22. Iss. 16. doi: 10.3390/ijms22168554.
  31. Salehi B., Mnayer D., Özçelik B., Altin G., Kasapoğlu K. N., Daskaya-Dikmen C., Sharifi-Rad M., Selamoglu Z., Acharya K., Sen S., Matthews K. R., Fokou P. V.T., Sharopov F., Setzer W. N., Martorell M., Sharifi-Rad J. Plants of the Genus Lavandula: From Farm to Pharmacy // Nat. Prod. Comm. 2018. V. 13. Iss. 10. P. 1385–1402. doi: 10.1177/1934578X1801301037.
  32. Salinas-Patino V.A., Espinoza-Mellado M.R., Hernandez-Pimentel M.V., García-Pineda M., Montes-Villafan S., Rodríguez-Dorantes A. Phytohormones Action on Fouquieria splendens Callogenesis and Organogenesis Processes // Int. J. Agricult. Innov. Res. 2018. V. 7. Iss. 2. P. 2319–1473.
  33. Seldimirova O. A., Kudoyarova G. R., Kruglova N. N., Galin I. R., Veselov D. S. Somatic Embryogenesis in Wheat and Barley callus in vitro Is determined by the level of Indoleacetic and Abscisic Acids // Russ. J. Dev. Biol. 2019. V. 50. No 1. P. 124–135. doi: 10.1134/S1062360419030056
  34. Skoog F., Miller C. O. Chemical Regulation of Growth and Organ Formation in Plant Tissues Cultured in Vitro // Symp. Soc. Exp. Biol. 1957. V. 11. P. 118–130.
  35. Smeringai J., Schrumpfova P. P., Pernisova M. Cytokinins – regulators of de novo shoot organogenesis // Front. Plant Sci. 2023. V. 14. doi: 10.3389/fpls.2023.1239133.
  36. Spinoso-Castillo J.L., Bello-Bello J.J. In Vitro Stress-Mediated Somatic Embryogenesis in Plants // Meth. Mol. Biol. 2022. V. 2527. P. 223–235. doi: 10.1007/978-1-0716-2485-2_16.
  37. Vysotskaya L. B., Korobova A. V., Kudoyarova G. R. Abscisic acid accumulation in the roots of nutrient-limited plants: Its impact on the differential growth of roots and shoots // J. Plant Physiol. 2008. V. 165. P. 1274–1279. doi: 10.1016/j.jplph.2007.08.014.
  38. Wang C., Ma H., Zhu W., Zhang J., Zhao X., Li X. Seedling-derived leaf and root tip as alternative explants for callus induction and plant regeneration in maize // Physiol. Plant. 2021. V. 172. Iss. 3. P. 1570–1581. doi: 10.1111/ppl.13347.
  39. Wojcik A. M., Wojcikowska B., Gaj M. D. Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants // Int. J. Mol. Sci. 2020. V. 21. Iss. 4. doi: 10.3390/ijms21041333.
  40. Yegorova N., Kruglova N., Galin I., Stavtzeva I. Induction of morphogenesis in the callus culture of Lavandula angustifolia Mill. // BIO Web Conf. 2020. V. 24. doi: 10.1051/bioconf/20202400098

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Explants (a), primary calli (b), non-morphogenic (c) and morphogenic (d) calli of the first passage of L. angustifolia obtained from different explants. Legend: B – bud, PK – primary callus, SL – leaf segment, SP – bud segment, SS – stem segment. Scale: 10 mm.

下载 (296KB)
3. Fig. 2. Content of endogenous hormones in various explants of L. angustifolia: a – IAA, b – ABA, c – cytokinins.

下载 (311KB)
4. Fig. 3. Content of endogenous hormones in primary calli of L. angustifolia obtained from different explants: a – IAA, b – ABA, c – cytokinins.

下载 (352KB)
5. Fig. 4. Content of endogenous hormones in morphogenic and non-morphogenic calli of the first passage of L. angustifolia, obtained from different explants: a – IAA, b – ABA, c – cytokinins. Note: data on the content of endogenous hormones in morphogenic calli of the first passage, obtained from the stem, are not available, explanation in the text.

下载 (395KB)

版权所有 © Russian Academy of Sciences, 2024