The blood leukocytes and platelets of little ground squirrels (Spermophilus pygmaeus Pall.) during hibernation and arousal
- Authors: Dzhafarova A.M.1, Chalabov S.I.1,2, Klichkhanov N.K.1
-
Affiliations:
- Dagestan State University
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- Issue: No 3 (2024)
- Pages: 358-374
- Section: ФИЗИОЛОГИЯ ЖИВОТНЫХ И ЧЕЛОВЕКА
- URL: https://gynecology.orscience.ru/1026-3470/article/view/647804
- DOI: https://doi.org/10.31857/S1026347024030073
- EDN: https://elibrary.ru/VAROZB
- ID: 647804
Cite item
Full Text
Abstract
During hibernation, mammals periodically go through cold (torpor) and warm (awakening) phases. Previously, a sharp decrease in the levels of leukocytes and blood platelets in the torpid state was found, but the dynamics of their changes during arousal remains unknown. We have studied the content and composition of the circulating cells of the little ground squirrel during arousal. The number of all types of leukocytes and platelets in the torpid state is significantly reduced. Restoration of the level of leukocytes in the blood during arousal occurs in two phases: fast (Tb 10—20°C) and slow (Tb 20—37°C). Unlike other cell types, the content of neutrophils remains below euthermal condition after body temperature recovery. During arousal in the Tb range of 10—30°C, the level of platelets increases linearly, while the normalization of the P-LCR parameter does not occur.
Keywords
Full Text

About the authors
A. M. Dzhafarova
Dagestan State University
Email: klich-khan@mail.ru
Russian Federation, Makhachkala
Sh. I. Chalabov
Dagestan State University; I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: klich-khan@mail.ru
Russian Federation, Makhachkala; Saint Petersburg
N. K. Klichkhanov
Dagestan State University
Author for correspondence.
Email: klich-khan@mail.ru
Russian Federation, Makhachkala
References
- Акcенова Г.Э., Логвинович О.C., Игнатьев Д.А., Коломийцева И.К. Динамика адаптивныx изменений в cелезенке гибеpниpующиx cуcликов Spermophilus undulates // Биофизика. 2018. Т. 63. В. 2. С. 311—317.
- Колаева С.Г., Новоселова Е.Г., Амерханов 3.Г., Куликов А.В., Ивков В.Г. Ежегодная инволюция и регенерация тимуса у зимнеспящих и перспективы ее исследований в области геронтологии и пролиферации стволовых клеток // Цитология. 2003. Т. 45. № 7. С. 628—634.
- Кузнецова Е.В. Эколого-физиологические адаптации представителей подсемейства Сricetinae к осенне-зимним условиям: Дис. канд. биол. наук по специальности 03.02.04 — зоология. Москва, 2019. 141 с.
- Мининкова А.И. Аналитические возможности гематологических анализаторов в оценке тромбоцитов (обзор литературы) // Клинич. лаб. диагн. 2012. № 3. С. 27—34.
- Новоселова Е.Г., Куликов А.В., Глушкова О.В., Черенков Д.А., Смирнова Г.Н., Архипова Л.В. Влияние трансплантации тимуса зимнеспящих сусликов на возрастную инволюцию вилочковой железы стареющих крыс // Докл. Академии наук. 2004. Т. 397. № 2. С. 279—280.
- Узенбаева Л.Б., Белкин В.В., Илюха В.А., Кижина А.Г., Якимова А.Е. Особенности состава и морфологии клеток периферической крови у трех видов летучих мышей Карелии в период зимней спячки // Журн. эволюц. биохим. физиол. 2015. Т. 51. № 4. С. 299—304.
- Ambid L., Castan I., Atgié C.L., Nibbelink M. Food intake and peripheral adrenergic activity in a hibernating rodent, the garden dormouse // Comp. Biochem. Physiol. Part A: Physiol. 1990. V. 97. № 3. P. 361—366. https://doi.org/10.1016/0300-9629(90)90624-2
- Atanassov C.L., Naegeli H.U., Zenke G., Schneider C., Kramarova L.I., Bronnikov G.E., Van Regenmortel M.H. Anti-lymphoproliferative activity of brown adipose tissue of hibernating ground squirrels is mainly caused by AMP // Comp. Biochem. Physiol. Part C: Pharmacol., Toxicol. Endocrinol. 1995. V. 112. № 1. P. 93—100. doi: 10.1016/0742-8413(95)00000-3
- Awad E.M., Khan S.Y., Sokolikova B., Brunner P.M., Olcaydu D., Wojta J., Breuss J.M., Uhrin P. Cold induces reactive oxygen species production and activation of the NF-kappa B response endothelial cells and inflammation in vivo // J. Thromb. Haemost. 2013. V. 11. P. 1716—1726. doi: 10.1111/jth.12357
- Barker J.M., Boonstra R. Preparing for winter: Divergence in the summer–autumn hematological profiles from representative species of the squirrel family // Comp. Biochem. Physiol. Part A: Mol. Integ. Physiol. 2005. V. 142. № 1. P. 32—42. https://doi.org/10.1016/j.cbpa.2005.07.003.
- Basu S., Hodgson G., Katz M., Dunn A.R. Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation // Blood, J. Am. Soc. Hematol. 2002. V. 100. № 3. P. 854—861. doi: 10.1182/blood.v100.3.854
- Biggar W.D., Bohn D.E., Kent G.E. Neutrophil circulation and release from bone marrow during hypothermia // Infection and Immunity. 1983. V. 40. № 2. P. 708—712. doi: 10.1128/iai.40.2.708-712.1983
- Bogren L.K., Drew K.L. Ischemia/reperfusion injury resistance in hibernators is more than an effect of reduced body temperature or winter season // Temperature. 2014. V. 1. № 2. P. 87—88. doi: 10.4161/temp.29761
- Bonis A., Anderson L., Talhouarne G., Schueller E., Unke J., Krus C., Stokka J., Koepke A., Lehrer B., Schuh A., Andersen J.J., Cooper S. Cardiovascular resistance to thrombosis in 13-lined ground squirrels // J. Comp. Physiol. B. 2019. V. 189. P. 167—177. doi: 10.1007/s00360-018-1186-x
- Bouma H.R., Carey H.V., Kroese F.G.M. Hibernation: the immune system at rest? // J. Leukoc. Biol. 2010a. V. 88. P. 619—624. doi: 10.1189/jlb.0310174
- Bouma H.R., Strijkstra A.M., Boerema A.S., Deelman L.E., Epema A.H., Hut R.A., Kroese F.G.M., Henning R.H. Blood cell dynamics during hibernation in the European Ground Squirrel // Vet. Immunol. Immunopathol. 2010b. V. 136. P. 319—323. doi: 10.1016/j.vetimm.2010.03.016
- Bouma H.R., Dugbartey G.J., Boerema A.S., Talaei F., Herwig A., Goris M., van Buiten A., Strijkstra A.M., Carey H.V., Henning R.H., Kroese F.G.M. Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination // J. Leukoc. Biol. 2013a. V. 94. № 3. P. 431—437. doi: 10.1189/jlb.0611298
- Bouma H.R., Henning R.H., Kroese F.G.M., Carey H.V. Hibernation is associated with depression of T-cell independent humoral immune responses in the 13-lined ground squirrel // Dev. Comp. Immunol. 2013b. V. 39. P. 154—160. doi: 10.1016/j.dci.2012.11.004
- Bouma H.R., Kroese F.G., Kok J.W., Talaei F., Boerema A.S., Herwig A., Draghiciu O., van Buiten A., Epema A.H., van Dam A., Strijkstra A.M., Henning R.H. Low body temperature governs the decline of circulating lymphocytes during hibernation through sphingosine-1-phosphate // Proc. Nat. Acad. Sci. 2011. V. 108. № 5. P. 2052—2057. doi: 10.1073/pnas.1008823108
- Bullard R.W., Funkhouser G.E. Estimated regional blood flow by rubidium 86 distribution during arousal from hibernation // Am. J. Physiol. 1962. V. 203. P. 266—270. https://doi.org/10.1152/ajplegacy.1962.203.2.266
- Burton R.S., Reichman O.J. Does immune challenge affect torpor duration? // Funct. Ecol. 1999. V. 13. P. 232—237. https://doi.org/10.1046/j.1365-2435.1999.00302.x
- Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance // Physiol. Rev. 2004. V. 84. P. 277—359. doi: 10.1152/physrev.00015.2003
- Carey H.V., Andrews M.T., Martin S.L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature // Physiol. Rev. 2003. V. 83. P. 1153—1181. doi: 10.1152/physrev.00008.2003
- Chesnutt J.K., Han H.C. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles // Phys. Biol. 2013. https://doi.org/10.3389/fbioe.2013.00018.
- Cooper S.T., Richters K.E., Melin T.E., Liu Z.J., Hordyk P.J., Benrud R.R., Geiser L.R., Cash S.E., Simon Shelley C., Howard D.R., Ereth M.H., Sola-Visner M.C. The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012. V. 302. P. 1202—1208. doi: 10.1152/ajpregu.00018.2012
- Cooper S.T., Sell S.S., Nelson L., Hawes J., Benrud J.A., Kohlnhofer B.M., Burmeister B.R., Flood V.H. Von Willebrand factor is reversibly decreased during torpor in 13-lined ground squirrels // J. Comp. Physiol. B. 2016a. V. 186. P. 131—139. doi: 10.1007/s00360-015-0941-5
- Cooper S.T., Sell S.S., Fahrenkrog M., Wilkinson K., Howard D.R., Bergen H., Cruz E., Cash S.E., Andrews M.T., Hampton M. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels // Physiol. Genomics. 2016b. V. 48. № 7. P. 513—525. doi: 10.1152/physiolgenomics.00120.2015
- Cooper S., Lloyd S., Koch A., Lin X., Dobbs K., Theisen T., Zuberbuehler M., Bernhardt K., Gyorfi M., Tenpas T., Hying S., Mortimer S., Lamont C., Lehmann M., Neeves K. Temperature effects on the activity, shape, and storage of platelets from 13-lined ground squirrels // J. Comp. Physiol. B. 2017. V. 187. P. 815—825. doi: 10.1007/s00360-017-1081-x
- Dahlgren C., Karlsson A. Respiratory burst in human neutrophils // J. Immunol. Methods. 1999. V. 232. P. 3—14. doi: 10.1016/s0022-1759(99)00146-5
- de Vrij E.L., Vogelaar P.C., Goris M., Houwertjes M.C., Herwig A., Dugbartey G.J., Boerema A.S., Strijkstra A.M., Bouma H.R., Henning R.H. Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia // PLOS ONE. 2014. V. 9. № 4. doi: 10.1371/journal.pone.0093218
- de Vrij E.L., Bouma H.R., Goris M., Weerman U., de Groot A.P., Kuipers J., Giepmans B.N.G., Henning R.H. Reversible thrombocytopenia during hibernation originates from storage and release of platelets in liver sinusoids // J. Comp. Physiol. B. 2021. V. 191. № 3. P. 603—615. doi: 10.1007/s00360-021-01351-3
- Dinauer M.C. Neutrophil defects and diagnosis disorders of neutrophil function: an overview // Neutrophil: Methods and Protocols / Еds Quinn M. T., DeLeo F.R. NY.: Springer US, 2020. Р. 11—29. doi: 10.1007/978-1-0716-0154-9_2
- Eash K.J., Greenbaum A.M., Gopalan P.K., Link D.C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow // J. Clin. Invest. 2010. V. 120. P. 2423—2431. doi: 10.1172/JCI41649
- Eash K.J., Means J.M., White D.W., Link D.C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions // Blood. 2009. V. 113. P. 4711—4719. doi: 10.1182/blood-2008-09-177287
- Fay M.E., Myers D.R., Kumar A., Turbyfield C.T., Byler R., Crawford K., et al. Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 1987—1992. doi: 10.1073/pnas.1508920113
- Franco M., Contreras C., Nespolo R.F. Profound changes in blood parameters during torpor in a South American marsupial // Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2013. V. 166. № 2. Р. 338—342. doi: 10.1016/j.cbpa.2013.07.010
- Frerichs K.U., Kennedy C., Sokoloff L., Hallenbeck J.M. Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia’’ // J. Cereb. Blood Flow Metab. 1994. V. 14. P. 193—205. doi: 10.1038/jcbfm.1994.26
- Furth R.V., Cohn Z.A. The origin and kinetics of mononuclear phagocytes // J. Exp. Med. 1968. V. 128. P. 415—435. doi: 10.1084/jem.128.3.415
- Galletti G., Cavallari A. The thymus of marmots: spontaneous, natural seasonal thymectomy? // Acta Anat. (Basel). 1972. V. 83. P. 593—605. DOI: 10.1159/ 000143901
- Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor // Annu. Rev. Physiol. 2004. V. 66. P. 239—274. doi: 10.1146/annurev.physiol.66.032102.115105
- Ghasemzadeh M., Hosseini E. Platelet-leukocyte crosstalk: linking proinflammatory responses to procoagulant state // Thromb. Res. 2013. V. 131. P. 191—197. doi: 10.1016/j.thromres.2012.11.028
- Halikas G., Bowers K. Seasonal variation in blood viscosity of the hibernating arctic ground squirrel (Spermophilus undulatus plesius) // Comp. Biochem. Physiol. Part A: Physiol. 1973. V. 44. № 2. P. 677—681. doi: 10.1016/0300-9629(73)90522-7
- Hampton M., Nelson B.T., Andrews M.T. Circulation and metabolic rates in a natural hibernator: an integrative physiological model // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010. V. 299. P. 1478—1488. doi: 10.1152/ajpregu.00273.2010
- Havenstein N., Langer F., Stefanski V., Fietz J. It takes two to tango: Phagocyte and lymphocyte numbers in a small mammalian hibernator // Brain Behav. Immun. 2016. V. 52. P. 71—80. doi: 10.1016/j.bbi.2015.09.018
- Horwitz B.A., Chau S.M., Hamilton J.S., Song C., Gorgone J., Saenz M., Horowitz J.M., Chen C.Y. Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013. V. 305. P. 759—768. doi: 10.1152/ajpregu.00450.2012
- Hu H.X., Du F.Y., Fu W.W., Jiang S.F., Cao J., Xu S.H., Wang H.P., Chang H., Goswami N., Gao Y.F. A dramatic blood plasticity in hibernating and 14-day hindlimb unloading Daurian ground squirrels (Spermophilus dauricus) // J. Comp. Physiol. B. 2017. V. 187. P. 869—879. doi: 10.1007/s00360-017-1092-7
- Huber N., Vetter S., Stalder G., Gerritsmann H., Giroud S. Dynamic function and composition shift in circulating innate immune cells in hibernating garden dormice // Front. Physiol. 2021. V. 12. doi: 10.3389/fphys.2021.620614
- Ince L.M., Weber J., Scheiermann C. Control of leukocyte trafficking by stress-associated hormones // Front. Iimmunol. 2019. V. 9. doi: 10.3389/fimmu.2018.03143
- Inkovaara P., Suomalainen P. Studies on the physiology of the hibernating hedgehog. On the leukocyte counts in the hedgehog’s intestine and lungs // Ann. Acad. Sci. Fenn. Biol. 1973. V. 200. P. 1—21. PMID: 4788806
- Jacobs S.E., Berg M., Hunt R., Tarnow-Mordi W.O., Inder T.E., Davis P.G. Cooling for newborns with hypoxic ischaemic encephalopathy // Cochrane Database Syst. Rev. 2013. V. 31. doi: 10.1002/14651858.CD003311.pub3
- Jaroslow B.N., Serrell B.A. Differential sensitivity to hibernation of early and late events in development of the immune response // J. Exp. Zool. 1972. V. 181. P. 111—116. https://doi.org/10.1002/jez.1401810112
- Kandefer-Szerszen M. Interferon production in leukocytes of spotted sousliks — effect of hibernation on the interferon response in vitro // J. Interferon Res. 1988. V. 8. P. 95—103. doi: 10.1089/jir.1988.8.95
- Kizhina A., Uzenbaeva L., Antonova E., Belkin V., Ilyukha V., Khizhkin E. Hematological parameters in hibernating Eptesicus nilssonii (Mammalia: Chiroptera) collected in Northern European Russia // Acta Chiropterol. 2018. V. 20. P. 273—283. doi: 10.3161/15081109ACC2018.20.1.021
- Klichkhanov N.K., Nikitina E.R., Shihamirova Z.M., Astaeva M.D., Chalabov Sh.I., Krivchenko A.I. Erythrocytes of little ground squirrels undergo reversible oxidative stress during arousal from hibernation // Front. Physiol. 2021. V. 12. doi: 10.3389/fphys.2021.730657
- Kurtz C.C., Carey H.V. Seasonal changes in the intestinal immune system of hibernating ground squirrels // Dev. Comp. Immunol. 2007. V. 31. P. 415—428. https://doi.org/10.1016/j.dci.2006.07.003
- Kurtz C.C., Lindell S.L., Mangino M.J., Carey H.V. Hibernation confers resistance to intestinal ischemia-reperfusion injury // Am. J. Physiol. Gastrointest. Liver Physiol. 2006. V. 291. № 5. P. 895—901. https://doi.org/10.1152/ajpgi.00155.2006
- Lechler E., Penick G.D. Blood clotting defect in hibernating ground squirrels (Citellus tridecemlineatus) // Am. J. Physiol. 1963. V. 205. P. 985—988. https://doi.org/10.1152/ajplegacy.1963.205.5.985
- Li R., Zijlstra J.G., Kamps J.A., van Meurs M., Molema G. Abrupt reflow enhances cytokine-induced proinflammatory activation of endothelial cells during simulated shock and resuscitation // Shock. 2014. V. 42. № 4. P. 356—364. doi: 10.1097/SHK.0000000000000223
- Lilliehöök I., Tvedten H. Validation of the Sysmex XT-2000iV hematology system for dogs, cats, and horses. I. Erythrocytes, platelets, and total leukocyte counts // Vet. Clin. Pathol. 2009. V. 38. № 2. P. 163—174. https://doi.org/10.1111/j.1939-165X.2009.00125.x
- Mallet M.L. Pathophysiology of accidental hypothermia // QJM: Int. J. Med. 2002 V. 95. P. 775—785. https://doi.org/10.1093/qjmed/95.12.775
- Maniero G.D. Classical pathway serum complement activity throughout various stages of the annual cycle of a mammalian hibernator, the golden–mantled ground squirrel Spermophilus lateralis // Dev. Comp. Immunol. 2002. V. 26. P. 563—574. https://doi.org/10.1016/S0145-305X(02)00006-X
- Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity // Nat. Rev. Immunol. 2011. V. 11. 519—531. DOI: https://doi.org/10.1038/nri3024
- Martin S.L. Mammalian hibernation: a naturally reversible model for insulin resistance in man? // Diab. Vasc. Dis. Res. 2008. V. 5. P. 76—81. https://doi.org/10.3132/dvdr.2008.013
- McArthur M.D., Milsom W.K. Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden-mantled (Spermophilus lateralis) ground squirrels // Physiol. Zool. 1991. V. 64. № 4. P. 940—959. https://www.jstor.org/stable/30157950
- McCarron R.M., Sieckmann D.G., Yu E.Z., Frerichs K., Hallenbeck J.M. Hibernation, a state of natural tolerance to profound reduction in organ blood flow and oxygen delivery capacity // In Molecular Mechanisms of Metabolic Arrest / Ed. Storey K. B.; Oxford: BIOS Scientific Publishers, 2001. P. 23—42.
- Miglis M., Wilder D., Reid T., Bakaltcheva I. Effect of taurine on platelets and the plasma coagulation system // Platelets. 2002. V. 13. P. 5—10. https://doi.org/10.1080/09537100120112558
- Montoro-García S., Schindewolf M., Stanford S., Larsen O.H., Thiele T. The role of platelets in venous thromboembolism // In Seminars in thrombosis and hemostasis. 2016. Vol. 42. № 3. P. 242—251. . doi: 10.1055/s-0035-1570079
- Muleme H.M., Walpole A.C., Staples J.F. Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences // Physiol. Biochem. Zool. 2006. V. 79. № 3. P. 474—483. https://doi.org/10.1086/501053
- Nedergaard J., Cannon B. Preferential utilization of brown adipose tissue lipids during arousal from hibernation in hamsters // Am. J. Physiol. Regul. Integr. Comp Physiol. 1984. V. 247. P. 506—512. doi: 10.1152/ajpregu.1984.247.3.R506
- Nelson C.J., Otis J.P., Carey H.V. Global analysis of circulating metabolites in hibernating ground squirrels // Comp. Biochem. Physiol. Part D: Genomics Proteomics. 2010. V. 5. № 4. P. 265—273. doi: 10.1016/j.cbd.2010.07.002
- Novoselova E.G., Kolaeva S.G., Makar V.R., Agaphonova T.A. Production of tumor necrosis factor in cells of hibernating ground squirrels Citellus undulatus during annual cycle // Life Sci. 2000. V. 67. P. 1073—1080. doi: 10.1016/s0024-3205(00)00698-6
- Otis J.P., Pike A.C., Torrealba J.R., Carey H.V. Hibernation reduces cellular damage caused by warm hepatic ischemia–reperfusion in ground squirrels // J. Comp. Physiol. B. 2017. V. 187. P. 639—648. doi: 10.1007/s00360-017-1056-y
- Parretta E., Cassese G., Santoni A., Guardiola J., Vecchio A., Di Rosa F. Kinetics of in vivo proliferation and death of memory and naive CD8 T cells: parameter estimation based on 5-bromo-2′-deoxyuridine incorporation in spleen, lymph nodes, and bone marrow // J. Immunol. 2008. V. 180. P. 7230—7239. https://doi.org/10.4049/jimmunol.180.11.7230
- Pinsky D.J., Naka Y., Liao H., Oz M.C., Wagner D.D., Mayadas T.N., Johnson R.C., Hynes R.O., Heath M., Lawson C.A., Stern D.M. Hypoxia-induced exocytosis of endothelial cell Weibel–Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation // J. Clin. Invest. 1996. № 97. P. 493—500. doi: 10.1172/JCI118440
- Pivorun E.B., Sinnamon W.B. Blood coagulation studies in normothermic, hibernating, and aroused Spermophilus franklini // Cryobiol. 1981. V. 18. P. 515—520. https://doi.org/10.1016/0011-2240(81)90212-1
- Prendergast B.J., Freeman D.A., Zucker I., Nelson R.J. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002. V. 282. P. 1054—1062. doi: 10.1152/ajpregu.00562.2001
- Reasor D.A.Jr., Mehrabadi M., Ku D.N., Aidun C.K. Determination of critical parameters in platelet margination // Ann. Biomed. Eng. 2012. V. 41. P. 238—249. https://doi.org/10.1007/s10439-012-0648-7
- Reddick R.L., Poole B.L., Penick G.D. Thrombocytopenia of hibernation. Mechanism of induction and recovery // Lab. Invest. 1973. V. 28. P. 270—278. PMID: 4687533
- Reitsema V.A., Oosterhof M.M., Henning R.H., Bouma H.R. Phase specific suppression of neutrophil function in hibernating Syrian hamster // Develop. Comp. Immunol. 2021. V. 119. doi: 10.1016/j.dci.2021.104024.
- Reznik G., Reznik-Schuller H., Emminger A., Mohr U. Comparative studies of blood from hibernating and nonhibernating European hamsters (Cricetus cricetus L) // Lab. Animal Sci. 1975. V. 25. P. 210—215. PMID: 1134037
- Sahdo B., Evans A.L., Arnemo J.M., Frobert O., Sarndahl E., Blanc S. Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators? // Int. J. Med. Sci. 2013. V. 10. doi: 10.7150/ijms.4476.
- Saunders D.K., Roberts A.C., Ultsch G.R. Blood viscosity and hematological changes during prolonged submergence in normoxic water of northern and southern musk turtles (Sternotherus odoratus) // J. Exp. Zool. 2000. V. 287. P. 459—466. https://doi.org/10.1002/1097-010X(20001201)287:7<459:: AID-JEZ1>3.0.CO; 2—6
- Shihamirova Z.M., Dzhafarovа A.M., Klichkhanov N.K. Hematological characteristics and erythrokinetic indiсes in little ground squirrels during arousal from hibernation // Probl. Cryobiol. Cryomed. 2020. V. 30. № 2. P. 132—147. doi: 10.15407/cryo30.02.132
- Shivatcheva T.M., Ankov V.K., Hadjioloff A.I. Circannual fluctuations of the serum cortisol in the European ground squirrel, Citellus citellus L // Comp. Biochem. Physiol. A. Comp. Physiology. 1988. V. 90. № 3. P. 515—518. https://doi.org/10.1016/0300-9629(88)90229-0
- Sidky Y.A., Auerbach R. Effect of hibernation on the hamster spleen immune reaction in vitro // Proc. Soc. Exp. Biol. Med. 1968. № 129. P. 122—127. doi: 10.3181/00379727-129-33265
- Spann A.P., Campbell J.E., Fitzgibbon S. R., Rodriguez A., Cap A.P., Blackbourne L.H., Shaqfeh E.S.G. The effect of hematocrit on platelet adhesion: experiments and simulations // Biophysical J. 2016. V. 111. № 3. P. 577—588. doi: 10.1016/j.bpj.2016.06.024
- Sprent J. Circulating T and B lymphocytes of the mouse. I. Migratory properties // Cell Immunol. 1973. V. 7. P. 10—39. doi: 10.1016/0008-8749(73)90180-9
- Sprent J. Lifespans of naive, memory and effector lymphocytes // Curr. Opin. Immunol. 1993. V. 5. P. 433—438. doi: 10.1016/0952-7915(93)90065-z
- Spurrier W.A., Dawe A.R. Several blood and circulatory changes in the hibernation of the 13-lined ground squirrel, Citellus tridecemlineatus // Comp. Biochem. Physiol. A. Comp. Physiol. 1973. V. 44. P. 267—282. doi: 10.1016/0300-9629(73)90479-9
- Straub A., Krajewski S., Hohmann J.D., Westein E., Jia F., Bassler N., Selan C., Kurz J., Wendel H.P., Dezfouli S., Yuan Y., Nandurkar H., Jackson S., Hickey M.J., Peter K. Evidence of platelet activation at medically used hypothermia and mechanistic data indicating ADP as a key mediator and therapeutic target // Arterioscler. Thromb. Vasc. Biol. 2011. V. 31. P. 1607—1616. doi: 10.1161/ATVBAHA.111.226373
- Szilagyi J.E., Senturia J.B. A comparison of bone marrow leukocytes in hibernating and nonhibernating woodchucks and ground squirrels // Cryobiol. 1972. V. 9. P. 257—261. doi: 10.1016/0011-2240(72)90044-2
- Talaei F., Bouma H.R., Hylkema M.N., Strijkstra A.M., Boerema A.S., Schmidt M., Henning R.H. The role of endogenous H2S formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster // J. Exp. Biol. 2012. V. 215. P. 2912—2919. doi: 10.1242/jeb.067363
- Thiele J.R, Zeller J., Kiefer J., Braig D., Kreuzaler S., Lenz Y., Potempa L. A., Grahammer F., Huber T.B., Huber-Lang M., Bannasch H., Stark G.B., Peter K., Eisenhardt S.U. A conformational change in C-reactive protein enhances leukocyte recruitment and reactive oxygen species generation in ischemia/reperfusion injury // Front. Immunol. 2018. V. 9. P. 675. https://doi.org/10.3389/fimmu.2018.00675
- Tøien Ø., Drew K.L., Chao M.L., Rice M.E. Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels // Am. J. Physiol. Integr. Comp. Physiol. 2001. V. 281. P. 572—583. https://doi.org/10.1152/ajpregu.2001.281.2.R572
- Uzenbaeva L.B., Kizhina A.G., Ilyukha V.A., Belkin V.V., Khizhkin E.A. Morphology and composition of peripheral blood cells during hibernation in bats (Chiroptera, Vespertilionidae) of Northwestern Russia // Biol. Bull. 2019. V. 46. P. 398—406. doi: 10.1134/S1062359019030130
- Wang C.H., Chen N.C., Tsai M.S., Yu P.H., Wang A.Y., Chang W.T., Huang C.H, Chen W.J. Therapeutic hypothermia and the risk of hemorrhage: a systematic review and meta-analysis of randomized controlled trials // Medicine (Baltimore). 2015. V. 94. P. 2152. doi: 10.1097/MD.0000000000002152
- Weitten M., Robin J.P., Oudart H., Pévet P., Habold C. Hormonal changes and energy substrate availability during the hibernation cycle of Syrian hamsters // Hormon. Behavior. 2013. V. 64. № 4. P. 611—617. doi: 10.1016/j.yhbeh.2013.08.015
- Yasuma Y., McCarron R.M., Spatz M., Hallenbeck J.M. Effects of plasma from hibernating ground squirrels on monocyte-endothelial cell adhesive interactions // Am. J. Physiol.-Regul., Integr. Comp. Physiol. 1997. V 273. № 6. P. 1861—1869. doi: 10.1152/ajpregu.1997.273.6.R1861
Supplementary files
