Metabolic characteristics of the amphipod Gammarus oceanicus (Crustacea: Amphipoda) exposed to octylphenol (4-T-OP)
- Autores: Berezina N.A.1, Gubelit Y.I.1, Bakina L.G.2, Egorova A.V.2, Kholodkevich S.V.2
-
Afiliações:
- Zoological Institute of the Russian Academy of Sciences
- St. Petersburg Federal Research Center of the Russian Academy of Sciences
- Edição: Nº 6 (2024)
- Páginas: 809–816
- Seção: ECOLOGY
- URL: https://gynecology.orscience.ru/1026-3470/article/view/647844
- DOI: https://doi.org/10.31857/S1026347024060131
- EDN: https://elibrary.ru/ujnvbh
- ID: 647844
Citar
Texto integral
Resumo
The growing impact of human activities on the biosphere requires research into the effects of exposure to hazardous toxic substances on aquatic ecosystems. Ecophysiological parameters of the amphipod Gammarus oceanicus Segerstråle, 1947, such as rates of food consumption, oxygen consumption and phosphate excretion (excreted in the body’s urine), were studied in order to determine the responses of these crustaceans to the influence of a little-studied micropollutant of anthropogenic origin, xenoextrogen, 4-tert-octylphenol (4t-OP). After 28 days of exposure to the lowest concentrations of 4t-OP (0.25 μg/l), a decrease in the feeding and excretory activity of crustaceans was detected, and the level of oxygen consumption was similar to the values in control individuals. All studied parameters of the tested animals changed significantly after the same time of exposure to 2.5 μg/l 4t-OP, showing an adverse effect on the functioning of the crustacean organism. The data obtained can be used to develop criteria for the quality control of the aquatic environment.
Sobre autores
N. Berezina
Zoological Institute of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: nadezhda.berezina@zin.ru
Rússia, Universitetskaya embankment. 1, St. Petersburg, 199034
Yu. Gubelit
Zoological Institute of the Russian Academy of Sciences
Email: nadezhda.berezina@zin.ru
Rússia, Universitetskaya embankment. 1, St. Petersburg, 199034
L. Bakina
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Email: nadezhda.berezina@zin.ru
Rússia, 14th Line V.O., 39, St. Petersburg, 199178
A. Egorova
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Email: nadezhda.berezina@zin.ru
Rússia, 14th Line V.O., 39, St. Petersburg, 199178
S. Kholodkevich
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Email: nadezhda.berezina@zin.ru
Rússia, 14th Line V.O., 39, St. Petersburg, 199178
Bibliografia
- Алимов А. Ф. Интенсивность обмена у водных пойкилотермных животных // Общие основы изучения водных экосистем. Л.: Наука, 1979. С. 5–20.
- Березина Н. А., Сухих Н. М., Егорова А. В., Жаковская З. А. Физиологические и репродуктивные нарушения у балтийских амфипод Gmelinoides fasciatus при экспериментальном воздействии 4-трет-октилфенола // Сибирский экологический журнал. 2024. №2. С. 208–219. https://doi.org/10.15372/SEJ20240203
- Голубков С. М. Масса тела и экскреция фосфора водными беспозвоночными // Известия Российской академии наук. Серия биологическая. 2014. № 1. С. 86–91. https://doi.org/10.7868/S0002332914010068
- ГОСТ 18309-2014 // Вода. Методы определения фосфорсодержащих веществ (ISO 6878:2004, NEQ). Издание официальное. Москва: Стандартинформ, 2015. 24 с.
- Гутельмахер Б. Л. Метаболизм планктона как единого целого. Л.: Наука, 1986. 155 с.
- Зарипова Ф. Ф., Файзулин А. И., Кузовенко А. Е. Особенности питания озерной лягушки в условиях техногенного загрязнения тяжелыми металлами (Республика Башкортостан) // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2013. Т. 18, № 4. С. 1279–1282.
- Berezina N. A. Energy metabolism of сrustaceans (Amphipoda) from the northern populations (White Sea basin) // Russian Journal of Ecology. 2023. V. 54. P. 62–69. https://doi.org/10.1134/S1067413623010022
- Berezina N. A., Sharov A. N., Chernova E. N., Malysheva O. A. Effects of Diclofenac on the reproductive health, respiratory rate, cardiac activity, and heat tolerance of aquatic animals // Environ. Toxicol. Chem. 2022. V. 41. P. 677–686. https://doi.org/10.1002/etc.5278
- Bina B., Mohammadi F., Amin M. M., Pourzamani H. R., Yavari Z. Determination of 4-nonylphenol and 4-tert-octylphenol compounds in various types of wastewater and their removal rates in different treatment processes in nine wastewater treatment plants of Iran // Chin. J. Chem. Eng. 2018. V. 26 . P. 183–190. https://doi.org/10.1016/j.cjche.2017.04.009
- Cheng J. R., Wang K., Yu J., Yu Z. X., Yu X. B., Zhang Z. Z. Distribution and fate modeling of 4-nonylphenol, 4-t-octylphenol, and bisphenol a in the Yong River of China // Chemosphere. 2018. 195. P. 594–605.https://doi.org/10.1016/j.chemosphere.2017.12.085
- David A., Fenet H., Gomez E. Alkylphenols in marine environments: Distribution monitoring strategies and detection considerations // Mar. Pollut. Bull. 2009. V. 58. 7. P. 953–960.https://doi.org/10.1016/j.marpolbul.2009.04.021
- Dong R. R., Yang S. J., Feng R. J., Fang L. L., Sun Y. L., Zhang Y. G., Wang D. S. Complete feminization of catfish by feeding Limnodilus, an annelid worm collected in contaminated streams // Environ. Res. 2014. V.133. P. 371–379. https://doi.org/10.1016/j.envres.2014.05.018
- Du Y. B., Li Y. Y., Zhen Y. J., Hu C. B., Liu W. H., Chen W. Z., Sun Z. W. Toxic effects in Siganus oramin by dietary exposure to 4-tert-octylphenol // Bull. Environ. Contam. Toxicol. 2008. V. 80. 6. P. 534–538.https://doi.org/10.1007/s00128-008-9388-7
- Fang Q., Shi X., Zhang L., Wang Q., Wang X., Guo Y., Zhou B. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae // J. Hazard. Materials. 2015. V. 283. P. 897–904. https://doi.org/10.1016/j.jhazmat.2014.10.039
- Glazier D. S. Is metabolic rate a universal “pacemaker”for biological processes? // Biol. Rev. 2015. V. 90. 2. P. 377–407. https://doi.org/10.1111/brv.12115
- Irshad K., Rehman, K., Fiayyaz, F., Sharif, H., Murtaza, G., Kamal, S. Akash M. S.H. Role of heavy metals in metabolic disorders // Endocrine disrupting chemicals-induced metabolic disorders and treatment strategies. Emerging contaminants and associated treatment technologies. Ed: Akash M. S.H. et al. Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-45923-9_13
- Isidori M., Lavorgna M., Nardelli A., Parrella A. Toxicity on crustaceans and endocrine disrupting activity on Saccharomyces cerevisiae of eight alkylphenols // Chemosphere. 2006. V. 64. 1. P. 135–143.https://doi.org/10.1016/j.chemosphere.2005.10.047
- Killen S. S., Marras S., Metcalfe N B., McKenzie D.J., Domenici P. Environmental stressors alter relationships between physiology and behaviour // Trends in Ecology & Evolution. 2013. V. 28. 11. P. 651–658.https://doi.org/10.1016/j.tree.2013.05.005
- Kuz’mina V.V., Komov V. T., Tarleva A. F., Sheptitskiy V. Effect of dietary metal exposure on the locomotor reactions and food consumption in common carp Cyprinus carpio (L.) // Inland Water Biology. 2019. V. 12. P. 356–364. https://doi.org/10.1134/S1995082919030106
- Lalonde B., Garron C. Nonylphenol, octylphenol, and nonylphenol ethoxylates dissemination in the Canadian freshwater environment // Arch. Environ. Contam. Toxicol. 2021. V. 80. 2. P. 319–330. https://doi.org/10.1007/s00244-020-00807-x
- Li X. Y., Wei F., Gao J. S., Wang H. Y., Zhang Y. H. Oxidative stress and hepatotoxicity of Rana chensinensis exposed to low doses of octylphenol // Environ. Toxicol. Pharmacol. 2018 V. 64. P. 86–93.https://doi.org/10.1016/j.etap.2018.09.011
- Liu R., Zhang Y., Gao J., Li X. Effects of octylphenol exposure on the lipid metabolism and microbiome of the intestinal tract of Rana chensinensis tadpole by RNAseq and 16s amplicon sequencing // Ecotoxicol. Environ. Saf. 2020. V. 197. 110650. https://doi.org/:10.1016/j.ecoenv.2020.110650
- Meijide F. J., Vázquez G. R., Piazza Y. G., Babay P. A., Itria R. F., Nostro F. L.L. Effects of waterborne exposure to 17β-estradiol and 4-tert-octylphenol on early life stages of the South American cichlid fish Cichlasoma dimerus // Ecotoxicol. Environ. Saf. 2016. V. 124. P. 82–90.https://doi.org/10.1016/j.ecoenv.2015.10.004
- Miyagawa S., Sato T., Iguchi T. Subchapter 129B–Octylphenol // Handbook of Hormones. Ed: Ando H., Ukena K., Nagata S. Cambridge: Academic Press, 2021. P. 1001–1002.
- Moldogazieva N. T., Mokhosoev I. M., Mel’nikova T.I., Zavadskiy S. P., Kuz’menko A.N., Terentiev A. A. Dual character of reactive oxygen, nitrogen, and halogen species: Endogenous sources, interconversions and neutralization. Biochemistry (Moscow). 2020. V. 85. 1. P. 56–78.https://doi.org/10.1134/S0006297920140047
- Murphy M. Review article. How mitochondria produce reactive oxygen species // The Biochemical journal. 2009. V. 417. P. 1–13. https://doi.org/10.1042/BJ20081386
- Nwizugbo K. C., Ogwu M. C., Eriyamremu G. E., Ahana C. M. Alterations in energy metabolism, total protein, uric and nucleic acids in African sharptooth catfish (Clarias gariepinus Burchell) exposed to crude oil and fractions // Chemosphere. 2023. V. 316. 137778.https://doi.org/10.1016/j.chemosphere.2023.137778
- Prasad G. S., Rout S. K., Malik M. M., Karmakar S., Amin A., Ahmad I. Occurrence of xenoestrogen alkylphenols (Octylphenols and Nonylphenol) and its impact on the aquatic ecosystem // Xenobiotics in aquatic animals. Ed: Rather M. A., Amin A., Hajam Y. A., Jamwal A., Ahmad I. Singapore: Springer, 2023. https://doi.org/10.1007/978-981-99-1214-8_13
- Rey Vázquez G., Meijide F. J., Da Cuña R. H., Lo Nostro F. L., Piazza Y. G., Babay P. A., Trudeau V. L., Maggese M. C., Guerrero G. A. Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish Cichlasoma dimerus (Teleostei, Perciformes) // Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009. V. 150. 2. P. 298–306. https://doi.org/10.1016/j.cbpc.2009.05.012
- Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: Linking physiology and ecology in a multi-stressor landscape // J. Experim. Biol. 2021. V. 224. jeb236802. https://doi.org/10.1242/jeb.236802
- Vanni M. J. Nutrient cycling by animals in freshwater ecosystems // Ann. Rev. Ecol. Evol. Syst. 2002. V. 33. P. 341–370. https://doi.org/10.1146/annurev.ecolsys.33.010802.150519
- Weidinger A., Kozlov A. V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction // Biomolecules. 2015. V. 5. P. 472–484. https://doi.org/10.3390/biom5020472
- White C. R., Alton L. A., Bywater C. L., Lombardi E J., Marshall D. J. Metabolic scaling is the product of life-history optimization // Science. 2022. V. 377. P. 834–839. https://doi.org/10.1126/science.abm7649
- Zaytseva T. B., Medvedeva N. G. Molecular mechanisms of the response to 4-tert-Octylphenol-induced stress in a сyanobacterium Planktothrix agardhii // Microbiology. 2019. V. 88. P. 416–422.https://doi.org/10.1134/S0026261719040143
Arquivos suplementares
