Metabolic characteristics of the amphipod Gammarus oceanicus (Crustacea: Amphipoda) exposed to octylphenol (4-T-OP)

Capa

Citar

Texto integral

Resumo

The growing impact of human activities on the biosphere requires research into the effects of exposure to hazardous toxic substances on aquatic ecosystems. Ecophysiological parameters of the amphipod Gammarus oceanicus Segerstråle, 1947, such as rates of food consumption, oxygen consumption and phosphate excretion (excreted in the body’s urine), were studied in order to determine the responses of these crustaceans to the influence of a little-studied micropollutant of anthropogenic origin, xenoextrogen, 4-tert-octylphenol (4t-OP). After 28 days of exposure to the lowest concentrations of 4t-OP (0.25 μg/l), a decrease in the feeding and excretory activity of crustaceans was detected, and the level of oxygen consumption was similar to the values in control individuals. All studied parameters of the tested animals changed significantly after the same time of exposure to 2.5 μg/l 4t-OP, showing an adverse effect on the functioning of the crustacean organism. The data obtained can be used to develop criteria for the quality control of the aquatic environment.

Sobre autores

N. Berezina

Zoological Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nadezhda.berezina@zin.ru
Rússia, Universitetskaya embankment. 1, St. Petersburg, 199034

Yu. Gubelit

Zoological Institute of the Russian Academy of Sciences

Email: nadezhda.berezina@zin.ru
Rússia, Universitetskaya embankment. 1, St. Petersburg, 199034

L. Bakina

St. Petersburg Federal Research Center of the Russian Academy of Sciences

Email: nadezhda.berezina@zin.ru
Rússia, 14th Line V.O., 39, St. Petersburg, 199178

A. Egorova

St. Petersburg Federal Research Center of the Russian Academy of Sciences

Email: nadezhda.berezina@zin.ru
Rússia, 14th Line V.O., 39, St. Petersburg, 199178

S. Kholodkevich

St. Petersburg Federal Research Center of the Russian Academy of Sciences

Email: nadezhda.berezina@zin.ru
Rússia, 14th Line V.O., 39, St. Petersburg, 199178

Bibliografia

  1. Алимов А. Ф. Интенсивность обмена у водных пойкилотермных животных // Общие основы изучения водных экосистем. Л.: Наука, 1979. С. 5–20.
  2. Березина Н. А., Сухих Н. М., Егорова А. В., Жаковская З. А. Физиологические и репродуктивные нарушения у балтийских амфипод Gmelinoides fasciatus при экспериментальном воздействии 4-трет-октилфенола // Сибирский экологический журнал. 2024. №2. С. 208–219. https://doi.org/10.15372/SEJ20240203
  3. Голубков С. М. Масса тела и экскреция фосфора водными беспозвоночными // Известия Российской академии наук. Серия биологическая. 2014. № 1. С. 86–91. https://doi.org/10.7868/S0002332914010068
  4. ГОСТ 18309-2014 // Вода. Методы определения фосфорсодержащих веществ (ISO 6878:2004, NEQ). Издание официальное. Москва: Стандартинформ, 2015. 24 с.
  5. Гутельмахер Б. Л. Метаболизм планктона как единого целого. Л.: Наука, 1986. 155 с.
  6. Зарипова Ф. Ф., Файзулин А. И., Кузовенко А. Е. Особенности питания озерной лягушки в условиях техногенного загрязнения тяжелыми металлами (Республика Башкортостан) // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2013. Т. 18, № 4. С. 1279–1282.
  7. Berezina N. A. Energy metabolism of сrustaceans (Amphipoda) from the northern populations (White Sea basin) // Russian Journal of Ecology. 2023. V. 54. P. 62–69. https://doi.org/10.1134/S1067413623010022
  8. Berezina N. A., Sharov A. N., Chernova E. N., Malysheva O. A. Effects of Diclofenac on the reproductive health, respiratory rate, cardiac activity, and heat tolerance of aquatic animals // Environ. Toxicol. Chem. 2022. V. 41. P. 677–686. https://doi.org/10.1002/etc.5278
  9. Bina B., Mohammadi F., Amin M. M., Pourzamani H. R., Yavari Z. Determination of 4-nonylphenol and 4-tert-octylphenol compounds in various types of wastewater and their removal rates in different treatment processes in nine wastewater treatment plants of Iran // Chin. J. Chem. Eng. 2018. V. 26 . P. 183–190. https://doi.org/10.1016/j.cjche.2017.04.009
  10. Cheng J. R., Wang K., Yu J., Yu Z. X., Yu X. B., Zhang Z. Z. Distribution and fate modeling of 4-nonylphenol, 4-t-octylphenol, and bisphenol a in the Yong River of China // Chemosphere. 2018. 195. P. 594–605.https://doi.org/10.1016/j.chemosphere.2017.12.085
  11. David A., Fenet H., Gomez E. Alkylphenols in marine environments: Distribution monitoring strategies and detection considerations // Mar. Pollut. Bull. 2009. V. 58. 7. P. 953–960.https://doi.org/10.1016/j.marpolbul.2009.04.021
  12. Dong R. R., Yang S. J., Feng R. J., Fang L. L., Sun Y. L., Zhang Y. G., Wang D. S. Complete feminization of catfish by feeding Limnodilus, an annelid worm collected in contaminated streams // Environ. Res. 2014. V.133. P. 371–379. https://doi.org/10.1016/j.envres.2014.05.018
  13. Du Y. B., Li Y. Y., Zhen Y. J., Hu C. B., Liu W. H., Chen W. Z., Sun Z. W. Toxic effects in Siganus oramin by dietary exposure to 4-tert-octylphenol // Bull. Environ. Contam. Toxicol. 2008. V. 80. 6. P. 534–538.https://doi.org/10.1007/s00128-008-9388-7
  14. Fang Q., Shi X., Zhang L., Wang Q., Wang X., Guo Y., Zhou B. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae // J. Hazard. Materials. 2015. V. 283. P. 897–904. https://doi.org/10.1016/j.jhazmat.2014.10.039
  15. Glazier D. S. Is metabolic rate a universal “pacemaker”for biological processes? // Biol. Rev. 2015. V. 90. 2. P. 377–407. https://doi.org/10.1111/brv.12115
  16. Irshad K., Rehman, K., Fiayyaz, F., Sharif, H., Murtaza, G., Kamal, S. Akash M. S.H. Role of heavy metals in metabolic disorders // Endocrine disrupting chemicals-induced metabolic disorders and treatment strategies. Emerging contaminants and associated treatment technologies. Ed: Akash M. S.H. et al. Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-45923-9_13
  17. Isidori M., Lavorgna M., Nardelli A., Parrella A. Toxicity on crustaceans and endocrine disrupting activity on Saccharomyces cerevisiae of eight alkylphenols // Chemosphere. 2006. V. 64. 1. P. 135–143.https://doi.org/10.1016/j.chemosphere.2005.10.047
  18. Killen S. S., Marras S., Metcalfe N B., McKenzie D.J., Domenici P. Environmental stressors alter relationships between physiology and behaviour // Trends in Ecology & Evolution. 2013. V. 28. 11. P. 651–658.https://doi.org/10.1016/j.tree.2013.05.005
  19. Kuz’mina V.V., Komov V. T., Tarleva A. F., Sheptitskiy V. Effect of dietary metal exposure on the locomotor reactions and food consumption in common carp Cyprinus carpio (L.) // Inland Water Biology. 2019. V. 12. P. 356–364. https://doi.org/10.1134/S1995082919030106
  20. Lalonde B., Garron C. Nonylphenol, octylphenol, and nonylphenol ethoxylates dissemination in the Canadian freshwater environment // Arch. Environ. Contam. Toxicol. 2021. V. 80. 2. P. 319–330. https://doi.org/10.1007/s00244-020-00807-x
  21. Li X. Y., Wei F., Gao J. S., Wang H. Y., Zhang Y. H. Oxidative stress and hepatotoxicity of Rana chensinensis exposed to low doses of octylphenol // Environ. Toxicol. Pharmacol. 2018 V. 64. P. 86–93.https://doi.org/10.1016/j.etap.2018.09.011
  22. Liu R., Zhang Y., Gao J., Li X. Effects of octylphenol exposure on the lipid metabolism and microbiome of the intestinal tract of Rana chensinensis tadpole by RNAseq and 16s amplicon sequencing // Ecotoxicol. Environ. Saf. 2020. V. 197. 110650. https://doi.org/:10.1016/j.ecoenv.2020.110650
  23. Meijide F. J., Vázquez G. R., Piazza Y. G., Babay P. A., Itria R. F., Nostro F. L.L. Effects of waterborne exposure to 17β-estradiol and 4-tert-octylphenol on early life stages of the South American cichlid fish Cichlasoma dimerus // Ecotoxicol. Environ. Saf. 2016. V. 124. P. 82–90.https://doi.org/10.1016/j.ecoenv.2015.10.004
  24. Miyagawa S., Sato T., Iguchi T. Subchapter 129B–Octylphenol // Handbook of Hormones. Ed: Ando H., Ukena K., Nagata S. Cambridge: Academic Press, 2021. P. 1001–1002.
  25. Moldogazieva N. T., Mokhosoev I. M., Mel’nikova T.I., Zavadskiy S. P., Kuz’menko A.N., Terentiev A. A. Dual character of reactive oxygen, nitrogen, and halogen species: Endogenous sources, interconversions and neutralization. Biochemistry (Moscow). 2020. V. 85. 1. P. 56–78.https://doi.org/10.1134/S0006297920140047
  26. Murphy M. Review article. How mitochondria produce reactive oxygen species // The Biochemical journal. 2009. V. 417. P. 1–13. https://doi.org/10.1042/BJ20081386
  27. Nwizugbo K. C., Ogwu M. C., Eriyamremu G. E., Ahana C. M. Alterations in energy metabolism, total protein, uric and nucleic acids in African sharptooth catfish (Clarias gariepinus Burchell) exposed to crude oil and fractions // Chemosphere. 2023. V. 316. 137778.https://doi.org/10.1016/j.chemosphere.2023.137778
  28. Prasad G. S., Rout S. K., Malik M. M., Karmakar S., Amin A., Ahmad I. Occurrence of xenoestrogen alkylphenols (Octylphenols and Nonylphenol) and its impact on the aquatic ecosystem // Xenobiotics in aquatic animals. Ed: Rather M. A., Amin A., Hajam Y. A., Jamwal A., Ahmad I. Singapore: Springer, 2023. https://doi.org/10.1007/978-981-99-1214-8_13
  29. Rey Vázquez G., Meijide F. J., Da Cuña R. H., Lo Nostro F. L., Piazza Y. G., Babay P. A., Trudeau V. L., Maggese M. C., Guerrero G. A. Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish Cichlasoma dimerus (Teleostei, Perciformes) // Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009. V. 150. 2. P. 298–306. https://doi.org/10.1016/j.cbpc.2009.05.012
  30. Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: Linking physiology and ecology in a multi-stressor landscape // J. Experim. Biol. 2021. V. 224. jeb236802. https://doi.org/10.1242/jeb.236802
  31. Vanni M. J. Nutrient cycling by animals in freshwater ecosystems // Ann. Rev. Ecol. Evol. Syst. 2002. V. 33. P. 341–370. https://doi.org/10.1146/annurev.ecolsys.33.010802.150519
  32. Weidinger A., Kozlov A. V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction // Biomolecules. 2015. V. 5. P. 472–484. https://doi.org/10.3390/biom5020472
  33. White C. R., Alton L. A., Bywater C. L., Lombardi E J., Marshall D. J. Metabolic scaling is the product of life-history optimization // Science. 2022. V. 377. P. 834–839. https://doi.org/10.1126/science.abm7649
  34. Zaytseva T. B., Medvedeva N. G. Molecular mechanisms of the response to 4-tert-Octylphenol-induced stress in a сyanobacterium Planktothrix agardhii // Microbiology. 2019. V. 88. P. 416–422.https://doi.org/10.1134/S0026261719040143

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024