Analysis of structural safety of structures when accounting processes of progressive destruction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reasons for the occurrence of failures are considered, the consequence of which can be considered the progressive collapse of structures and the consideration of structural safety in more expanded concepts than when assessing the first and second groups of limit states for low-rise buildings built from local materials.

About the authors

Zh. Y. Mamatov

Kyrgyz State Technical University n.a. I. Razzakov

Author for correspondence.
Email: mamatov-zh@kstu.kg
Kyrgyzstan, Bishkek

A. A. Abdykalykov

Kyrgyz State Technical University n.a. I. Razzakov

Email: mamatov-zh@kstu.kg
Kyrgyzstan, Bishkek

N. U. Shamshiev

Kyrgyz State Technical University n.a. I. Razzakov

Email: mamatov-zh@kstu.kg
Kyrgyzstan, Bishkek

References

  1. Klyueva N.V., Bondarenko V.M., Piskunov A.V. Applied dissipative theory of structural safety of reinforced concrete//Izvestia Orel State Technical University. Series “construction, transport”. № 1/21, 2009. p. 8–18.
  2. Design of Buildings to Resist Progressive Collapse United Facilities Criteria (UFC)-4-023-03. 2005. 139 pp.
  3. Mkrtychev O.V., Raiser V.D. Reliability theory in the design of building structures. Monograph. M.: Publishing House ASV. 2016. 908 pp.
  4. Perelmuter A.V. Selected problems of reliability and safety of building structures. Kiev: Publishing house. UkrNIIproektstalkonstruktsiya. 1999. 210 pp.
  5. Raiser V.D. Risk assessment in the design of structures // Earthquake-resistant construction. Safety of structures. 2007. P. 15–18.
  6. Malinetsky G.G. Mathematical foundations of synergetics. M.: KomKniga, 2005. 312 p.
  7. Kitaeva D.A., Pazylov Sh.T., Rudaev Ya.I. On applications of nonlinear dynamics methods in the mechanics of materials // Bulletin of the Perm State Technical University. Mathematical modeling of systems and processes. № 15. 2007. P. 46–70.
  8. Rudaev Ya.I. Elements of nonlinear dynamics in the mechanics of materials and structures // Bulletin of KRSU. V.17, № 1. 2017. P. 42–51.
  9. Mamatov Zh.Y. On irreversible deformation of rocks//Problems of natural sciences, information technologies and management at the present stage. Bishkek. Publishing house KSUCTA. 2003. P. 222–232.
  10. Rudaev Ya.I., Kitaeva D.A., Mamadalieva M.A. Modeling the deformation behavior of rocks // Notes of the Mining Institute, V. 222. 2016. P. 816–822.
  11. Adigamov N.S., Rudayev Ya.J. Education of state allowing for loss strength of materials//Journal of Mining Science, V. 35. № 4. 1999. P. 353–360.
  12. Djeran-Maigre I. et al. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys. 2014. V. 60(2). P. 200–207. https://doi.org/10.1134/S106377101402002X
  13. Ilyashenko A.V. et al. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7
  14. Kuznetsov S.V. On the operator of the theory of cracks // C. R. Acad. Sci. Paris. 1996. V. 323. P. 427–432.
  15. Kuznetsov S.V. Fundamental and singular solutions of Lamé equations of media with arbitrary anisotropy // Quart. Appl. Math. 2005. V. 63 (3). P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
  16. Terentjeva E.O. et al. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys. 2015. V. 61 (3). P. 356–367. https://doi.org/10.1134/S1063771015030112
  17. Nonlinear waves, structures and bifurcations / Ed. A.V. Gaponov-Grekov, M.I. Rabinovich. M.: Nauka. 1983. 263 p.
  18. Haken G. Information and self-organization. Macroscopic approach to complex systems. – M.: LENAND. 2014. 320 p.
  19. Gilmore R. Applied theory of disasters. Part I. M.: Mir. 1984. 285 p.
  20. Raiser V.D. Theory of reliability of structures. M.: ASV. 2010. 384 p.
  21. Khaitun S.D. Mechanics and irreversibility. M.: Janus. 1996. 448 p.
  22. Kachanov L.M. On the time of destruction under creep conditions // Izv. USSR Academy of Sciences, OTN. № 8. 1958.
  23. Rabotnov Yu.N. On fracture due to creep //PMTF. № 2, 1963. P. 113–123.
  24. Balescu R. Equilibrium and nonequilibrium statistical mechanics, V. 2. M.: Mir. 1978. 399 p.
  25. Bogachov V.I., Krylov N., Rekner M., Shaposhnikov S.V. Fokker-Planck-Kolmagorov equation. 2003. Izhevsk: Scientific Research Center Regular and Chaotic Dynamics
  26. Kirillov A., Shaposhnikov S.V., Bogachev V.I. Stationary Fokker-Planck equation with potential // DAN RF, V. 454. № 2. 2014. P. 131–137.
  27. Gradshtein I.S., Ryzhik I.M. Tables of integrals, sums, series and products. – St. Petersburg: BHV-Petersburg. 2011. 1232 p.
  28. Li S. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech. 2019. V. 109. P. 69–81.
  29. Li S. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Eur. J. Environ. Civ. Eng. 2020. V. 24. P. 2400–2421.
  30. Cairns D.S. et al. Progressive damage analysis and testing of composite laminates with fiber waves // Compos. Part A Appl. Sci. Manuf. 2016. V. 90. P. 51–61.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences