Dynamic equations of acoustic wave propagation in pre-deformed materials
- Autores: Markin A.A.1, Sokolova M.Y.1
-
Afiliações:
- Tula State University
- Edição: Nº 2 (2024)
- Páginas: 166-182
- Seção: Articles
- URL: https://gynecology.orscience.ru/1026-3519/article/view/673084
- DOI: https://doi.org/10.31857/S1026351924020066
- EDN: https://elibrary.ru/uwgcai
- ID: 673084
Citar
Resumo
Two approaches to obtaining dynamic equations for the propagation of displacement small disturbances are considered. These approaches are based on the use of models of hyperelastic and hypoelastic materials. We showed that these equations are interrelated. For the case of a plane monochromatic wave, expressions of acoustic tensors are obtained.
A comparative analysis of the effect of preliminary deformations on the propagation velocity of acoustic waves in isotropic and anisotropic materials is carried out. In the model of a hypoelastic material, the acoustic tensor depends on a nonholonomic measure of finite deformations. A nonholonomic measure of deformations is defined in such a way that its first invariant does not change during shape change, and the deviator does not depend on volumetric deformations. In this regard, the use of a hypoelastic material model allows us to obtain more reliable results when calculating phase velocities in an isotropic material with preliminary deformation.
Sobre autores
A. Markin
Tula State University
Autor responsável pela correspondência
Email: markin-nikram@yandex.ru
Rússia, Tula
M. Sokolova
Tula State University
Email: socolova-m-u@yandex.ru
Rússia, Tula
Bibliografia
- Biot M.A. The influence of initial stress on elastic waves // J. Appl. Phys. 1940. V. 11. № 8. P. 522–530; https://doi.org/10.1063/1.1712807
- Toupin R.A., Bernstein B. Sound waves in deformed perfectly elastic materials. Acoustoelastic effect // J. Acoust. Soc. Am. 1961. V. 33. № 2. P. 216–225; https://doi.org/10.1121/1.1908623
- Truesdell C. General and exact theory of waves in finite elastic strain // Arch. Ratio. Mech. Anal. 1961. V. 8. № 1. P. 263–296; https://doi.org/10.1007/978-3-642-88691-1_5
- Kube C.N. Scattering of harmonic waves from a nonlinear elastic inclusion // J. Acoust. Soc. Am. 2017. V. 141. № 6. P. 4756–4767; https://doi.org/10.1121/1.4986747
- Guliyev H., Aghayev Kh.B., Hasanova G. Determination of third-order elastic modulus for sedimentary rocks based on borehole geophysical data // Izvestiya Physics of the Solid Earth. 2016. № 6. P. 54–60; https://doi.org/10.7868/S0002333716050069
- Belyaev A.K., Polyanskiy V.A., Tretyakov D.A. Estimating of mechanical stresses, plastic deformations and damage by means of acoustic anisotropy. PNRPU Mechanics Bulletin, 2020. № 4. Р. 130–151; https://doi.org/10.15593/perm.mech/2020.4.12
- Jiang Y., Li G., Qian L.-X. et al. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis // Biomech. Model. Mechanobiol. 2015. V. 14. № 5. P. 1119–1128; https://doi.org/10.1007/s10237-015-0658-0
- Zaitsev V.Y. Nonlinear acoustics in studies of structural features of materials // MRS Bulletin. 2019. V. 44. P. 350–360; https://doi.org/10.1557/mrs.2019.109
- Stognii P.V., Khokhlov N.I., Petrova I.B. Modelling of Wave Processes in Fractured Geological Media Using Shoenberg Model // J. Appl. Math. Mech. 2020. V. 84. № 3. P. 375–386; https://doi.org/10.31857/S0032823520030091
- Markin A.A., Sokolova M.Yu. Thermomechanics of Elastoplastic Deformation. 2015. Cambridge: Cambridge International Science Publishing.
- Sirotin Yu.I., Shaskolskaya M.P. Fundamentals of crystal physics. 1979. M.: Nauka.
- Haupt P., Pao YH., Hutter K. Theory of incremental motion in a body with initial elasto-plastic deformation // J. Elasticity. 1992. V. 28. P. 193–221; https://doi.org/10.1007/BF00132211
- Guz A.N. Elastic waves in bodies with initial stresses. 1986. Kiev: Naukova Dumka.
- Lurie A.I. Non-linear Theory of Elasticity. 2012. North Holland.
- Romenskii E.I., Lys’ E.B., Cheverda V.A., Epov M.I. Dynamics of deformation of an elastic medium with initial stresses // Journal of Applied Mechanics and Technical Physics. 2017. V. 58. № 5. P. 914–923; https://doi.org/10.15372/PMTF20170518
- Belyankova T.I., Kalinchuk V.V., Sheidakov D.N. Higher-Order Modules in the Equations of Dynamics of a Prestressed Elastic Solid // Mech. Solids. 2019. V. 54, P. 491–501; https://doi.org/10.3103/S0025654419040010
- Pau A., Vestroni F. The role of material and geometric nonlinearities in acoustoelasticity // Wave Motion. 2019. V. 86. P. 79–90; https://doi.org/10.1016/j.wavemoti.2018.12.005
- Destrade M., Ogden R.W. On stress-dependent elastic moduli and wave speeds // J. Appl. Math. 2013. V. 78. № 5. P. 965–997; https://doi.org/10.1093/imamat/hxs003
- Yang H., Fu Li-Yun, Fu Bo-Ye, Müller T.M. Acoustoelastic FD simulation of elastic wave propagation in prestressed media // Front. Earth Sci. 2022. V. 10; https://doi.org/10.3389/feart.2022.886920
- Pao YH., Gamer U. Acoustoelastic waves in orthotropic media // J. Acoust. Soc. Am. 1985. V. 77. P. 806–812; https://doi.org/10.1121/1.392384
- Pozdeev A.A., Trusov P.V., Nyashin Yu.I. Large elastoplastic deformations: theory, algorithms, applications. 1986. M.: Nauka.
- Brovko G.L. A class of models of elastic bodies under finite deformations and stability of equilibrium // Stability in the mechanics of a deformable solid / Materials of the II All-Union Symposium. Kalinin. 1986. P. 111–121.
- Markin A.A., Tolokonnikov L.A. Measures of the final deformation processes // Proceedings of the North Caucasian Scientific Center of Higher Education. Natural sciences.1987. № 2. P. 49–53.
- Markin A.A., Sokolova M.Y. Variant of nonlinear elasticity relations // Mechanics of Solids. 2019. V. 54. № 8. P. 1182–1188; https://doi.org/10.3103/S0025654419080089
- Sokolova M.Yu., Khristich D.V. Finite strains of nonlinear elastic anisotropic materials. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Tomsk State University Journal of Mathematics and Mechanics]. 2021. № 70. Р. 103–116; https://doi.org/10.17223/19988621/70/9
- Markin A.A., Sokolova M.Y., Khristich D.V. Nonlinear elasticity of cubic crystals // Elasticity and Anelasticity / Materials of the International Scientific Symposium on the problems of mechanics of deformable bodies, dedicated to the 110th anniversary of the birth of A.A. Ilyushin. Moscow, 2021. P. 100–110.
Arquivos suplementares
