Spatial Dispersion of Acoustic Waves in Functionally Graded Rods

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Harmonic acoustic waves in a semi-infinite functional-gradient (FG) one-dimensional rod with arbitrary longitudinal inhomogeneity are analyzed by a combined method based on the modified Cauchy formalism and the method of exponential matrices. Closed dispersion equations for harmonic waves are constructed, from the solution of which implicit dispersion relations for acoustic waves in FG rods are obtained. For longitudinal heterogeneity of polynomial type, the corresponding dispersion relations are constructed explicitly.

全文:

受限制的访问

作者简介

A. Karakozova

National Research Moscow State University of Civil Engineering

编辑信件的主要联系方式.
Email: karioca@mail.ru
俄罗斯联邦, Moscow, 129337

参考

  1. Baron C., Naili S. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization // J. Acoust. Soc. Am. 2010. V. 127 (3). P. 1307–1317. https://doi.org/10.1121/1.3292949
  2. Bendenia N. et al. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation // Comp. Concrete. 2020. V. 26. № 3. P. 213–226. https://doi.org/10.12989/cac.2020.26.3.213
  3. Gupta A., Talha M. Recent development in modeling and analysis of functionally graded materials and structures // Prog. Aerosp. Sci. 2015. V. 79. P. 1–14. https://doi.org/10.1016/j.paerosci.2015.07.001
  4. Han X. et al. A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization // JSV. 2000. V. 236 (2). P. 307–321. https://doi.org/10.1006/jsvi.2000.2966
  5. Ilyashenko A.V. et al. SH waves in anisotropic (monoclinic) media // Z. Angew. Math. Phys. 2018. 69 (17). P. 17. https://doi.org/10.1007/s00033-018-0916-y
  6. Kuznetsov S.V. Cauchy formalism for Lamb waves in functionally graded plates // J. Vibr. Control. 2019. V. 25. № 6. P. 1227–1232. https://doi.org/10.1177/1077546318815376
  7. Kuznetsov S.V. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence // Waves Rand. Complex Media. 19. V. 31 (6). P. 1–10. https://doi.org/10.1080/17455030.2019.1683257
  8. Li Z., Yu J., Zhang X., Elmaimouni L. Guided wave propagation in functionally graded fractional viscoelastic plates: A quadrature-free Legendre polynomial method // Mech. Adv. Mater. Struct. 2020. V. 29 (16). P. 1–21. https://doi.org/10.1080/15376494.2020.1860273
  9. Menasria A. et al. A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions // Steel Comp. Struct. 2020. V. 36 (3). P. 355–367. https://doi.org/10.12989/scs.2020.36.3.355
  10. Vlasie V., Rousseau M. Guide modes in a plane elastic layer with gradually continuous acoustic properties // NDT&E Int. 2004. V. 37 (8). P. 633–644. https://doi.org/10.1016/j.ndteint.2004.04.003
  11. Amor M.B., Ghozlen M.H.B. Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method // Ultrasonics. 2015. V. 55. P. 10–14. https://doi.org/10.1016/j.ultras.2014.08.020
  12. Chikr S.C. et al. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach // Geomech. Eng. 2020. V. 21. № 5. P. 471–487. https://doi.org/10.12989/gae.2020.21.5.471
  13. Lefebvre J.E. et al. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach // IEEE T Ultrason. Ferr. 2001. V. 48 (5). P. 1332–1340. https://doi.org/10.1109/58.949742
  14. Othmani C. et al. Numerical simulation of lamb waves propagation in a functionally graded piezoelectric plate composed of GaAs-AlAs materials using Legendre polynomial approach // Optik. 2017. V. 142. P. 401–411.
  15. Yu J.G. et al. Propagating and non-propagating waves in infinite plates and rectangular cross section plates: orthogonal polynomial approach // Acta Mech. 2017. V. 228 (11). P. 3755–3769. https://doi.org/10.1007/s00707-017-1917-1
  16. Gopalakrishnan S., Ruzzene M., Hanagud S. Spectral Finite Element Method. In: Computational Techniques for Structural Health Monitoring. In: Springer Series in Reliability Engineering. London: Springer, 2011. 440 p. https://doi.org/10.1007/978-0-85729-284-1
  17. Nanda N., Kapuria S. Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories // Composite Struct. 2015. V. 132. № 3. P. 310–320. https://doi.org/10.1016/j.compstruct.2015.04.061
  18. Baron C. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum // Ultrasonics. 2011. V. 51. № 2. P. 123–130. https://doi.org/10.1016/j.ultras.2010.07.001
  19. Honarvar F., Enjilela E., Sinclair A., Mirnezami S. Wave propagation in transversely isotropic cylinders // Int. J. Solids and Struct. 2007. V. 44. № 16. P. 5236–5246. https://doi.org/10.1016/j.ijsolstr.2006.12.029
  20. Ilyashenko A.V. et al. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7
  21. Rigby S.E., Barr A.D., Clayton M. A review of Pochhammer–Chree dispersion in the Hopkinson bar // Proc. Inst. Civil Eng. – Eng. Comp. Mech. 2018. V. 171. № 1. P. 3–13. https://doi.org/10.1680/jencm.16.00027
  22. Wu B., Su Y.P., Liu D.Y., Chen W.Q., Zhang C.Z. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders // J. Sound Vibr. 2018. V. 412. № 12. P. 17–47. https://doi.org/10.1016/j.jsv.2018.01.055
  23. Xu Ch., Yu Z. Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method // Adv. Mech. Eng. 2017. 9 (11). P. 1–17. https://doi.org/10.1177/1687814017734457
  24. Zhang B. et al. Axial guided wave characteristics in functionally graded one-dimensional hexagonal piezoelectric quasi-crystal cylinders // Math. Mech. Solids. 2022. V. 27. № 1. P. 125–143. https://doi.org/10.1177/10812865211013458
  25. Kuznetsov S.V. Abnormal dispersion of flexural Lamb waves in functionally graded plates // Z. Angew. Math. Phys. 2019. V. 70 (89). P. 1–8. https://doi.org/10.1007/s00033-019-1132-0
  26. Guha S., Singh A.K. Influence of varying fiber volume fractions on plane waves reflecting from the stress-free/rigid surface of a piezoelectric fiber-reinforced composite half-space // Mech. Adv. Mater. Struct. 2022. V. 29. № 27. P. 5758–5772. https://doi.org/10.1080/15376494.2021.1964046
  27. Singh A.K., Rajput P., Guha S., Singh S. Propagation characteristics of love-type wave at the electro-mechanical imperfect interface of a piezoelectric fiber-reinforced composite layer overlying a piezoelectric half-space // Europ. J. Mech. – A/Solids. 2022. V. 93. P. 104527. https://doi.org/10.1016/j.euromechsol.2022.104527
  28. Singh S., Singh A.K., Guha S. Shear waves in a piezo-fiber-reinforced-poroelastic composite structure with sandwiched functionally graded buffer layer: Power series approach // Europ. J. Mech. – A/Solids. 2022. V. 92. P. 104470. https://doi.org/10.1016/j.euromechsol.2021.104470
  29. Singh S., Singh A.K., Guha S. Impact of interfacial imperfections on the reflection and transmission phenomenon of plane waves in a porous-piezoelectric model // Appl. Math. Model. 2021. V. 100. P. 656–675. https://doi.org/10.1016/j.apm.2021.08.022
  30. Singh A.K., Mahto S., Guha S. Analysis of plane wave reflection and transmission phenomenon at the interface of two distinct micro-mechanically modeled rotating initially stressed piezomagnetic fiber-reinforced half-spaces // Mech. Adv. Mater.Struct. 2022. V. 29. № 28. https://doi.org/10.1080/15376494.2021.2003490
  31. Gurtin M.E. The Linear Theory of Elasticity. Verlag, Berlin: Springer, 1976.
  32. Rauch J., Reed M. Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension // Duke Math. J. 1982. V. 49. P. 397–475.
  33. Hartman Ph. Ordinary Differential Equations (Classics in Applied Mathematics) 2nd Ed. Philadelphia: SIAM, 1987.
  34. Higham N.J. Functions of Matrices: Theory and Computation. N.Y.: SIAM, 2008.
  35. Kuznetsov S.V. Love waves in layered anisotropic media // J. Appl. Math. Mech. 2006. V. 70 (1). P. 116–127. https://doi.org/10.1016/j.jappmathmech.2006.03.004
  36. Gómez, A., Meiss J.D. Volume-preserving maps with an invariant // Chaos: Int. J. Nonlinear Sci. 2002. V. 12 (2). P. 289–299. https://doi.org/10.1063/1.1469622
  37. Benoist O. Writing positive polynomials as sums of (few) squares // EMS Newsletter. 2017. V. 9 (105). P. 8–13. https://doi.org/10.4171/NEWS/105/4
  38. Handelman D. Representing polynomials by positive linear functions on compact convex polyhedral // Pacific J. Math. 1988. V. 132 (1). P. 35–62. https://doi.org/10.2140/pjm.1988.132.35
  39. Ivic A. The Riemann Zeta-Function, Wiley: New York, 1985.
  40. Kuznetsov S.V. Fundamental and singular solutions of Lamé equations for media with arbitrary elastic anisotropy // Quart. Appl. Math. 2005, V. 63. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
  41. Hörmander L. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. N.Y.: Springer: 2007.
  42. Boreman G.D. Modulation Transfer Function in Optical and Electro-Optical Systems. Bellingham, WA.: SPIE Press, 2001.
  43. Ziegler P.A., Schumacher M.E., Dezes P., van Wees J.-D., Cloetingh S. Post-Variscan evolution of the lithosphere in the area of the European Cenozoic Rift System. London: Mem. Geol. Soc., 2006. P. 97–112. https://doi.org/10.1144/GSL.MEM.2006.032.01.06
  44. Loup B., Wildi W. Subsidence analysis in the Paris Basin: a key to Northwest European intracontinental basins? // Basin Res. 1994. V. 6. № 2–3. P. 159–177. https://doi.org/10.1111/j.1365-2117.1994.tb00082.x
  45. Goldstein R.V. et al. Long-wave asymptotics of Lamb waves // Mech. Solids. 2017. V. 52. P. 700–707. https://doi.org/10.3103/S0025654417060097
  46. Abers G.A. Seismic low-velocity layer at the top of subducting slabs: Observations, predictions, and systematic // Phys. Earth Planet. Inter. 2005. V. 149. № 1–2. P. 7–29. https://doi.org/10.1016/j.pepi.2004.10.002
  47. Nakanishi A. et al. Crustal evolution of the southwestern Kuril Arc, Hokkaido Japan, deduced from seismic velocity and geochemical structure // Tectonophysics. 2009. V. 472. № 1–4. P. 105–123. https://doi.org/10.1016/j.tecto.2008.03.003
  48. Kuznetsov S.V. Acoustic waves in functionally graded rods with periodic longitudinal inhomogeneity // Mech. Adv. Mater. Struct. 2022. https://doi.org/10.1080/15376494.2022.2032888

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. 1D FG is a rod; n shows the direction of the wave normal and x shows the direction of the coordinate axis along the direction of wave propagation.

下载 (18KB)
3. Fig. 2. Variations of magnitudes and specific energies with distance for a linear binomial with time-harmonic excitation of 2 Hz and increasing phase velocity; (a) magnitudes; (b) specific energies.

下载 (280KB)
4. Fig. 3. Changes in modules and specific energies with distance for a linear binomial with time-harmonic excitation of 2 Hz and decreasing phase velocity; (a) magnitudes; (b) specific energies.

下载 (245KB)

版权所有 © Russian Academy of Sciences, 2024