Exoskeleton Dynamics Simulation with the System of Three Variable-Length Links of Adjustable Stiffness
- Authors: Blinov A.O.1, Borisov A.V.1, Mukharlyamov R.G.2, Novikova M.A.1
-
Affiliations:
- Smolensk Branch, Moscow Power Engineering Institute
- People’s Friendship University of Russia (RUDN)
- Issue: No 1 (2024)
- Pages: 268-284
- Section: Articles
- URL: https://gynecology.orscience.ru/1026-3519/article/view/673142
- DOI: https://doi.org/10.31857/S1026351924010158
- EDN: https://elibrary.ru/VZJQFU
- ID: 673142
Cite item
Abstract
The article proposes a spatial model of an exoskeleton for the human musculoskeletal system, represented by three movable links of variable length and two-point masses. The stiffness of the links is controlled by changing the voltage supplied to the magnetic rheological fluid, which fills sections of variable length. The model can be used to develop comfortable exoskeletons, the kinematic characteristics of which are close to the kinematic characteristics of the human musculoskeletal system. The model dynamics equations are constructed using local coordinate systems.
The required laws of change of generalized coordinates are specified by the equations of program connections that determine the dependence of differentiable periodic functions on time. Control moments and longitudinal forces are determined by methods of solving inverse dynamics problems and are realized by changing the magnetic field strengths, which affect the change in the stiffness of the magnetic-rheological fluid. The magnetic field strengths that control the stiffness of the link are implemented by step functions. An animation of the movement of the mechanism has been synthesized, showing the adequacy of the proposed modeling procedure. The connections of the links are modeled by joints and motors that implement the necessary rotational motion. The dynamics of the model is controlled by changing the lengths of the links and the angles between the links.
Full Text

About the authors
A. O. Blinov
Smolensk Branch, Moscow Power Engineering Institute
Author for correspondence.
Email: alex-blinov67@yandex.ru
Russian Federation, Smolensk, 214013
A. V. Borisov
Smolensk Branch, Moscow Power Engineering Institute
Email: borisowandrej@yandex.ru
Russian Federation, Smolensk, 214013
R. G. Mukharlyamov
People’s Friendship University of Russia (RUDN)
Email: robgar@mail.ru
Russian Federation, Moscow, 117198
M. A. Novikova
Smolensk Branch, Moscow Power Engineering Institute
Email: mar.novikova@ro.ru
Russian Federation, Smolensk, 214013
References
- A. V. Borisov, I. E. Kaspirovich, and R. G. Mukharlyamov, “On mathematical modeling of the dynamics of multilink systems and exoskeletons,” J. Comput. Syst. Sci. Int. 60, 827–841 (2021). https://doi.org/10.1134/S106423072104002X
- A. V. Borisov and A. V. Chigarev, “The causes of a change in the length of a person’s link and their consideration when creating an exoskeleton,” Biomed. J. Sci. Tech. Res. 25, 18769–18771 (2020). https://doi.org/10.26717/BJSTR.2020.25.004137
- E. Piña-Martínez and E. Rodriguez-Leal, “Inverse modeling of human knee joint based on geometry and vision systems for exoskeleton applications,” Math. Probl. Eng. 2015, 145734 (2015). http://dx.doi.org/10.1155/2015/145734
- M. Nordin and H. Frankel, Basic Biomechanics of the Musculoskeletal System (Williams & Wilkins, Lippicot –London, 2001).
- A. V. Borisov and A. V. Chigarev, Mathematical Models of Exoskeleton. Dynamics, Strength, Control (Springer, 2022). https://doi.org/10.1007/978-3-030-97733-7
- A. V. Borisov, I. E. Kaspirovich, R. G. Mukharlyamov, and K.D. Filippenkov, “Robotic controlled electromechanical model of two links of variable length for aerospace purposes,” Izv. VUZov. Aviats. Tekhn., No. 1, 60–69 (2022).
- A. V. Borisov, I. E. Kaspirovich, and R. G. Mukharlyamov, “Dynamic control of compound structure with links of variable length,” Mech. Solids 56, 197–210 (2021). https://doi.org/10.3103/S0025654421020059
- A. Blinov, A. Borisov, L. Konchina, et al., “Simulation of the movement of the supporting leg of an exoskeleton with two links of variable length in 3D,” J. Appl. Inform. 16 (4), 122–134 (2021). https://doi.org/10.37791/2687-0649-2021-16-4-122-134
- A. Blinov, A. Borisov, K. Filippenkov, et al., “Modeling the dynamics of an exoskeleton link of variable length using the Lagrange – Maxwell system of differential equations of motion,” J. Appl. Inform. 17 (3), 117–130 (2022). https://doi.org/10.37791/2687-0649-2022-17-3-117-130
- P. W. Franks, G. M. Bryan, R. M. Martin, et al., “Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations,” Wearable Technol. 2, e16 (2021). https://doi.org/10.1017/wtc.2021.14
- S. Das Gupta, M. F. Bobbert, and D. A. Kistemaker, “The metabolic cost of walking in healthy young and older adults – A systematic review and meta analysis,” Sci. Rep. 9, 9956 (2019). https://doi.org/10.1038/s41598-019-45602-4
- N. Sanchez, S. N. Simha, J. M. Donelan, and J. M. Finley, “Using asymmetry to your advantage: Learning to acquire and accept external assistance during prolonged split-belt walking,” J. Neurophysiol. 125 (2), 344–357 (2020). https://doi.org/10.1152/jn.00416.2020
- A. J. Young and D. P. Ferris, “State of the art and future directions for lower limb robotic exoskeletons,” IEEE Trans. Neural Syst. Rehabil. Eng. 25 (2), 171–182 (2017). https://doi.org/10.1109/TNSRE.2016.2521160
- G. S. Sawicki, O. N. Beck, I. Kang, and A. J. Young, “The exoskeleton expansion: Improving walking and running economy,” J. Neuroeng. Rehabil. 17, 25 (2020). https://doi.org/10.1186/s12984-020-00663-9
- Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop optimization of hip assistance with a soft exosuit during walking,” Sci. Robot. 3 (15), eaar5438 (2018). https://doi.org/10.1126/scirobotics.aar5438
- S. Lee, J. Kim, L. Baker, et al., “Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking,” J. Neuroeng. Rehabil. 15, 66 (2018). https://doi.org/10.1186/s12984-018-0410-y
- P. Malcolm, S. Galle, W. Derave, and D. De Clercq, “Bi-articular knee-ankle-foot exoskeleton produces higher metabolic cost reduction than weight-matched mono-articular exoskeleton,” Front. Neurosci. 12, 69 (2018). https://doi.org/10.3389/fnins.2018.00069
- B. Lim, J. Lee, J. Jang, et al., “Delayed output feedback control for gait assistance with a robotic hip exoskeleton,” IEEE Trans. Robot. 35 (4), 1055–1062 (2019). https://doi.org/10.1109/TRO.2019.2913318
- M. K. MacLean and D. P. Ferris, “Energetics of walking with a robotic knee exoskeleton,” J. Appl. Biomech. 35 (5), 320–326 (2019). https://doi.org/10.1123/jab.2018-0384
- W. Cao, C. Chen, H. Hu, et al., “Effect of hip assistance modes on metabolic cost of walking with a soft exoskeleton,” IEEE Trans. Autom. Sci. Eng. 18 (2), 426–436 (2020). https://doi.org/10.1109/TASE.2020.3027748
- R. L. Medrano, G. C. Thomas, and E. J. Rouse, “Methods for measuring the just noticeable difference for variable stimuli: Implications for perception of metabolic rate with exoskeleton assistance,” in Proc. of 8th IEEE RAS/EMBS Int. Conf. for Biomedical Robotics and Biomechatronics (BioRob) (IEEE, New York, 2020), pp. 483–490. https://doi.org/10.1109/BioRob49111.2020.9224374
- P. W. Franks, N. A. Bianco, G. M. Bryan, et al., “Testing simulated assistance strategies on a hipknee-ankle exoskeleton: A case study,” in Proc. of 8th IEEE RAS/EMBS Int. Conf. for Biomedical Robotics and Biomechatronics (BioRob) (IEEE, New York, 2020), pp. 700–707. https://doi.org/10.1109/BioRob49111.2020.9224345
- G. M. Bryan, P. W. Franks, S. C. Klein, et al., “A hip–knee–ankle exoskeleton emulator for studying gait assistance,” Int. J. Robot. Res. 40 (4-5), 722–746 (2020). https://doi.org/10.1177/0278364920961452
- K. Bengler, C. M. Harbauer, and M. Fleischer, “Exoskeletons: A challenge for development,” Wearable Tech. 4, e1 (2023). https://doi.org/10.1017/wtc.2022.28
- J. Carlson, “Magnetorheological Fluid Actuators,” in Adaptronics and Smart Structures: Basics, Materials, Design, and Applications (Springer, Saarbrücken, 1999), pp. 180-195.
- S. Laflamme, Online Learning Algorithm for Structural Control Using Magnetorheological Actuators (MIT, Cambridge, 2007).
- F. Ahmadkhanlou, J.L. Zite, and G. N. Washington, “A magnetorheological fluid-based controllable active knee brace,” Proc. SPIE 6527, 652700 (2007). https://doi.org/10.1117/12.715902
- J. Chen and W. Liao, “Design, testing and control of a magnetorheological actuator for assistive knee braces,” Smart Mater. Struct. 19 (2), 035029 (2010). https://doi.org/10.1088/0964-1726/19/3/035029
- Y. Bougrinat, “Design and development of a lightweight ankle exoskeleton for human walking augmentation,” Mechatron. 64, 102297 (2019). https://doi.org/10.1016/j.mechatronics.2019.102297
- A. Blinov, A. Borisov, L. Konchina, and M. Novikova, “Applying the models of magneto- rheological substances in the study of exoskeleton variable-length link with adjustable stiffness,” J. Appl. Inform. 17 (2), 133-142 (2022). https://doi.org/10.37791/2687-0649-2022-17-2-133-142
- L. I. Sedov, Continuum Mechanics, Vol. 1 (Nauka, Moscow, 1970) [in Russian].
- V. N. Pokrovskii, Statistical Mechanics of Dilute Suspensions (Nauka, Moscow 1978) [in Russian].
- E. V. Lakhtina and A. F. Pshenichnikov, “Dispersion of magnetic susceptibility and the microstructure of magnetic fluid,” Colloid J. 68 (3), 294–303 (2006). https://doi.org/10.1134/S1061933X06030057
- N. I. Konovalova and S. I. Martynov, “Dynamics of magnetic particles in a viscous liquid,” Izv. VUZov. Povolzh. Reg. Fiz.-Mat. Nauki, No. 3, 3–11 (2009).
- D. N. Chirikov, Candidate’s Dissertation in Mathematics and Physics (UrFU, Ekaterinburg, 2012).
- J. P. Rich, P. S. Doyle, and G. H. McKinley, “Magnetorheology in an aging, yield stress matrix fluid,” Rheol. Acta. 51, 579–593 (2012). https://doi.org/10.1007/s00397-012-0632-z
- D. N. Chirikov, Theoretical Study of Rheological Properties of Bidisperse Magnetic Fluids: Final Research Report (UrFU, Ekaterinburg, 2013) [in Russian].
- S.A. Novopashin, M.A. Serebryakova, and S.Ya. Khmel, “Methods of magnetic fluid synthesis (review),” Thermophys. Aeromech. 22 (4), 397-412 (2015). https://doi.org/10.1134/S0869864315040010
- A. V. Lebedev, “Viscosity of magnetic fluids must be modified in calculations of dynamic susceptibility,” J. Magn. Magn. Mater. 431, 30–32 (2017). https://doi.org/10.1016/j.jmmm.2016.09.110
- E. S. Belyaev et al., Magnetorheological Fluids: Technologies of Creation and Application, Ed. by A. S. Plekhov (NGTU im E. Alekseeva, Nizhnii Novgorod, 2017) [in Russian].
- Y. A. Alekhina, L. A. Makarova, T. S. Rusakova, et al., “Properties of magnetorheological elastomers in crossed AC and DC magnetic fields,” Zh. Sib. Federal. Univ. Ser.: Mat. Fiz. 10 (1), 45-50 (2017). https://doi.org/10.17516/1997-1397-2017-10-1-45-50
- P. V. Puchkov, “On the use of magnetic fluids as a lubricant in friction units of machines and mechanisms,” NovaInfo 1 (78), 95–99 (2018).
- L. A. Makarova, Candidate’s Dissertation in Mathematics and Physics (MGU, Moscow, 2018).
- H. A. Yusupbekov, M. M. Sobirov, and A.R. Yuldashev, “Active suspension of a car with variable shock absorbers,” Nauka Tekhn. Obraz., No. 2(66), 18–27 (2020).
- K.V. Naigert and V. A. Tselishchev, Applied Properties of Magnetorheological Fluids (UGATU, Ufa, 2021) [in Russian].
- F. L. Chernousko, I. M. Ananyevsky, S.A. Reshmin, Control of Nonlinear Dynamical Systems. Methods and Applications (Fizmatlit, Moscow, 2006; Springer, Berlin, 2008).
- A. V. Borisov, Modeling of the Human Musculoskeletal System and the Application of the Results Obtained to Develop a Model of an Anthropomorphic Robot (Sputnik+, Moscow, 2009) [in Russian].
Supplementary files
