A model of diffusion annihilation of gas-filled spherical pores during hot isostatic pressing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A diffusion model of dissolution of gas-filled spherical pores in a solid during hot isostatic pressing (HIP) is proposed. It is assumed that the pore surface emits vacancies when a solid is loaded with external pressure, as a result of which the pores shrink in size. Two specific cases are considered: pores with a constant amount of insoluble gas and pores with a gas diffusively dissolving in the material surrounding the pore. In the first case, the increasing internal pressure of the gas in the pore first slows down the process of pore contraction and finally stops it completely when the internal pressure of the gas in the pore becomes equal to the sum of the externally applied HIP pressure and the Laplace pressure due to the pore surface tension. In the second case, the internal gas pressure in the pore decreases rapidly due to the dissolution of the gas in the material surrounding the pore and therefore pore contraction does not stop. When the pore reaches a sub-micron size, the pore contraction is quickly accelerated due to the increasing Laplace pressure and finally the pore annihilates.

Full Text

Restricted Access

About the authors

A. I. Epishin

Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS

Author for correspondence.
Email: a.epishin2021@gmail.com
Russian Federation, Chernogolovka

D. S. Lisovenko

Ishlinsky Institute for Problems in Mechanics of the RAS

Email: lisovenk@ipmnet.ru
Russian Federation, Moscow

M. I. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS

Email: a.epishin2021@gmail.com
Russian Federation, Chernogolovka

References

  1. Alymov M.I., Shustov V.S., Kasimtsev A.V. et al. Synthesis of titanium carbide nanopowders and production of porous materials on their basis // Nanotechnol. Russia. 2011. V. 6. P. 130–136. https://doi.org/10.1134/S1995078011010022
  2. Gnedovets A.G., Zelenskii V.A., Ankudinov A.B. et al. Hierarchically structured, highly porous nickel synthesized in sintering–evaporation process from a metal nanopowder and a space holder // Dokl. Chem. 2019. V. 484. P. 64–67. https://doi.org/10.1134/S0012500819020022
  3. Jeon T.J., Hwang T.W., Yun, H.J. et. al. Control of porosity in parts produced by a direct laser melting process // Appl. Sci. 2018. V. 8. P. 2573. https://doi.org/10.3390/app8122573
  4. Galarraga H., Lados D.A., Dehoff R.R. et. al. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) // Additive Manufacturing. 2016. V. 10. P. 47–57. https://doi.org/10.1016/j.addma.2016.02.003
  5. Epishin A.I., Alymov M.I. Determination of the volume fraction of microporosity in single crystals of nickel-based superalloys // Inorg. Mater. 2023. V. 59. P. 1496–1503. https://doi.org/10.1134/S0020168523150037
  6. Fullagar K.P.L., Broomfield R.W., Hulands M. et. al. Aero engine test experience with CMSX-4® alloy single-crystal turbine blades // J. Eng. Gas Turbines Power. 1996. V. 118. P. 380–388. https://doi.org/10.1115/1.2816600
  7. Epishin A., Fedelich B., Link T. et. al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling // Mater. Sci. Eng. A. 2013. V. 586. P. 342–349. https://doi.org/10.1016/j.msea.2013.08.034
  8. Epishin A.I., Link T., Fedelich B. et. al. Hot isostatic pressing of single-crystal nickel-base superalloys: Mechanism of pore closure and effect on mechanical properties // MATEC Web of Conf. 2014. V. 14. P. 08003. https://doi.org/10.1051/matecconf/20141408003
  9. Kosonen T., Kakko K., Raitanen N. Evaluation of pore re-opening after HIP in LPBF Ti–6Al–4V // Powder Metallurgy. 2021. V. 64. № 5. P. 425–433. https://doi.org/10.1080/00325899.2021.1928997
  10. Reed R.C., Cox D.C., Rae C.M.F. Damage accumulation during creep deformation of a single crystal superalloy at 1150°C // Mater. Sci. Eng. A. 2007. V. 448. № 1–2. P. 88–96. https://doi.org/10.1016/j.msea.2006.11.101
  11. Morozov E.M., Alymov M.I. Fracture pressure in microdefects of consolidated materials // Dokl. Phys. Chem. 2021. V. 501. P. 111–113. https://doi.org/10.1134/S0012501621110026
  12. Sofronis P., McMeeking R.M. Creep of power-law material containing spherical voids // J. Appl. Mech. V. 59. № 2S. P. S88–S95. https://doi.org/10.1115/1.2899512
  13. Levinsky Yu.V. The behavior of closed pores at the final stage of sintering // Russ. J. Non-Ferrous Metals. 2009. V. 50. № 3. P. 298–316. https://doi.org/10.3103/S1067821209030225
  14. Prasad M.R.G., Gao S., Vajragupta N., Hartmaier A. Influence of trapped gas on pore healing under hot isostatic pressing in nickel-base superalloys // Crystals. 2020. V. 10. P. 1147. https://doi.org/10.3390/cryst10121147
  15. Ruffini A., Bouar Y. Le, Finel A., Epishin A.I. et.al. Dislocations interacting with a pore in an elastically anisotropic single crystal nickel-base superalloy during hot isostatic pressing // Comp. Mater.s Sci. 2022. V. 204. P. 111118. https://doi.org/10.1016/j.commatsci.2021.111118
  16. Feldmann T., Fedelich B., Epishin A. Simulation of hot isostatic pressing in a single‐crystal ni base superalloy with the theory of continuously distributed dislocations combined with vacancy diffusion // Adv. Eng. Mater. 2022. V. 24. № 6. P. 2101341. https://doi.org/10.1002/adem.202101341
  17. Sakai T., Iwata M. On the final stage in pressure sintering process // Jpn. J. Appl. Phys. 1976. V. 15. № 3. P. 537–542. https://doi.org/10.1143/JJAP.15.537
  18. Wang H., Li Z. Diffusive shrinkage of a void within a grian of a stressed polycrystal // J. Mech. Phys. Solids. 2003. V. 51. № 5. P. 961–976. https://doi.org/10.1016/S0022-5096(02)00039-X
  19. Epishin A.I., Bokstein B.S., Svetlov I.L. et. al. A vacancy model of pore annihilation during hot isostatic pressing of single crystals of nickel-base superalloys // Inorg. Mater. Appl. Res. 2018. V. 9. P. 57–65. https://doi.org/10.1134/S2075113318010100
  20. Epishin A., Camin B., Hansen L. et. al. Refinement and experimental validation of a vacancy model of pore annihilation in single-crystal nickel-base superalloys during hot isostatic pressing // Adv. Engineering Mater. 2020. V. 23. № 7. P. 2100211. https://dx.doi.org/10.2139/ssrn.3751560
  21. Compaan K., Haven Y. Correlation factors for diffusion in solids // Trans. Faraday Soc. 1956. V. 52. P. 786–801. http://dx.doi.org/10.1039/TF9565200786
  22. Brillo J., Egry I. Surface tension of nickel, copper, iron and their binary alloys // J. Mater. Sci. 2004. V. 40. P. 2213–2216. https://doi.org/10.1007/s10853-005-1935-6
  23. Saaremaa E. The surface tension of solid nickel. University of British Columbia, 1957. 72 p. https://doi.org/10.14288/1.0081208
  24. Dwight H.B. Tables of integrals and other mathematical data. 3rd ed., New York, The Macmillan Company, 1957. 288 p.
  25. Harris K., Erickson G.L., Sikkenga S.L. et.al. Development of two rhenium- containing superalloys for single- crystal blade and directionally solidified vane applications in advanced turbine engines // JMEP. 1993. V. 2. № 4. P. 481–487. https://doi.org/10.1007/BF02661730
  26. Epishin A.I., Nolze G., Alymov M.I. Pore morphology in single crystals of a nickel-based superalloy after hot isostatic pressing // Metall. Mater. Trans. A. 2023. V. 54. № 1. P. 371–379. https://doi.org/10.1007/s11661-022-06893-x
  27. Engström A., Ågren J. Assessment of diffusional mobilities in face-centered cubic Ni-Cr-Al alloys // Z. Metallkd. 1996. V. 87. № 2. P. 92–97. https://doi.org/10.1515/ijmr-1996-870205
  28. Epishin A.I., Lisovenko D.S. Comparison of isothermal and adiabatic elasticity characteristics of the single crystal nickel-based superalloy CMSX-4 in the temperature range between room temperature and 1300 °C // Mech. Solids. 2023. V. 58. № 5. P. 1587–1598. https://doi.org/10.3103/S0025654423601301
  29. Brückner U., Epishin A., Link T. Local X-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys // Acta Mater. 1997. V. 45. № 12. P. 5223–5231. https://doi.org/10.1016/S1359-6454(97)00163-8
  30. Krupp U., Christ H.-J. Internal nitridation of nickel-base alloys. Part I. Behavior of binary and ternary alloys of the Ni-Cr-Al-Ti system // Oxidation of Metals. 1999. V. 52. P. 277–298. https://doi.org/10.1023/A:1018843612011
  31. Wriedt H.A., Gonzalez O.D. The solubility of nitrogen in solid iron-nickel alloys near 1000 °C // Trans. AIME. 1961. V. 221. № 3. P. 532–535.
  32. Fromm E., Gebhardt E. Gase und Kohlenstoff in Metallen. Berlin: Springer-Verlag, 1976. 748 p.
  33. Park, J-W., Altstetter, C.J. The diffusion and solubility of oxygen in solid nickel // Metall. Trans. A. 1987. V. 18. P. 43–50. https://doi.org/10.1007/BF02646220
  34. Alcock C.B., Brown P.B. Physicochemical factors in the dissolution of thoria in solid nickel // Metal Science Journal. 1969. V. 3. № 1. P. 116–120. https://doi.org/10.1179/msc.1969.3.1.116
  35. Seybolt A.U. Dissertation, Yale University, New Haven, CT, 1936.
  36. Hansen M., Anderko K. Constitution of binary alioys. New-York.: Mc Graw-Hill, 1958. 989 p.
  37. David M., Prillieux A., Monceau D., Connétable D. First-principles study of the insertion and diffusion of interstitial atoms (H, C, N and O) in nickel // J. Alloys Compd. 2020. 822. P. 153555. https://doi.org/10.1016/j.jallcom.2019.153555
  38. Krupp U., Christ H.-J. Internal nitridation of nickel-base alloys. Part II. Behavior of quaternary Ni-Cr-Al-Ti alloys and computer-based description // Oxidation of Metals. 1999. V. 52. P. 299–320. https://doi.org/10.1023/A:1018895628849

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Vacancy model of dissolution of gas-filled pores in Influenza: a subgranular pore of radius Rs with a central spherical pore of radius Rp, bounded by a small-angle boundary of the IUG (LAB), consisting of edge dislocations. The gypsum pressure pe acts on the subgranule, the gas in the pore is under pressure pi. Vacancies and gas atoms diffuse from the pair to the MUG. (a) Vacuum time. (b) A pore containing gas.

Download (160KB)
3. Fig. 2. Change in the dimeter of the Dp (a) pore and the pressure inside the pi (b) pore during the gypsum process (T = 1288 °C, pe = 103 MPa) at different initial gas pressure inside the pi,0 pore in a nickel alloy. The initial pore diameter is 10 microns. The colored solid lines represent the numerical solution of the differential equation (2.16), the black dashed lines represent the analytical solution of (2.25) and (2.27). (c) The dependence of the limiting diameter Dp,min of the pore on pi,0.

Download (234KB)
4. 3. Temperature dependence of solubility of O in solid Ni. The Seybolt data was obtained by digitizing the graph in Fig. 6 from [33].

Download (101KB)
5. 4. Kinetics of the evolution of vacuum pores and pores with nickel-soluble gases (N and O) in the Gypsum process at a temperature of T = 1288 °C and an external pressure of pe = 103 MPa. The calculation takes into account the dissolution of gas (oxygen, nitrogen) in the metal surrounding the pore. (a) The change in gas pressure in the pores. (b) Changing the pore size. The initial pore diameter is 10 microns, and the initial gas pressure in gas–filled pores is 7.5 MPa.

Download (103KB)

Copyright (c) 2025 Russian Academy of Sciences