Mechanics of blood flow and wall deformation in the abdominal aorta

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The medical problems of vascular mechanics are discussed in relation to the issues of blood flow and deformation of the walls in the abdominal part of the human aorta, including the formation of an aneurysm. The articles analyzed that present modern medical concepts about the hydromechanics of blood flow and deformations of arterial walls, as well as which provide the physical parameters necessary for mathematical modeling. The results of coupled mathematical modeling of blood flow and deformations of the walls in the abdominal part of the aorta in various pathological processes in it, considered in modeling as mechanical damage, including in the presence of an aneurysm, are presented. The effect of an aneurysm on the deposition of red blood cells from the blood flow is also analyzed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Verezub

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Ресей, Moscow

D. Ghandilyan

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Ресей, Moscow

D. Lisovenko

Ishlinsky Institute for Problems in Mechanics RAS

Хат алмасуға жауапты Автор.
Email: lisovenk@ipmnet.ru
Ресей, Moscow

V. Pantushov

A.S. Puchkov Ambulance and Emergency Medical Care Station

Email: lisovenk@ipmnet.ru
Ресей, Moscow

A. Prostomolotov

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Ресей, Moscow

Әдебиет тізімі

  1. Tregubov V.P. Mathematical modelling of the non-Newtonian blood flow in the aortic arc // Computer Research and Modeling. 2017. V. 9. № 2. P. 259–269. https://doi.org/10.20537/2076-7633-2017-9-2-259-269
  2. Hughes T.J.R., Liu W.K., Zimmermann T.K. Lagrangian–Eulerian finite element formulation for incompressible viscous flows // Comput. Methods Appl. Mech. Eng. 1981. V. 29. № 3. P. 329–349. https://doi.org/10.1016/0045-7825(81)90049-9
  3. Urquiza S.A., Blanco P.J., Venere M.J., Feijoo R.A. Multidimensional modelling for the carotid artery blood flow // Comput. Methods Appl. Mech. Eng. 2006. V. 195. P. 4002–4017. https://doi.org/10.1016/j.cma.2005.07.014
  4. Ladisa J.F., Figueroa C.A., Vignon-Clementel I.E. et. al. Computational simulations for aortic coarctation: representative results from a sampling of patients // J. Biomech. Eng. 2011. V. 133. № 9. P. 091008. https://doi.org/10.1115/1.4004996
  5. Mokhtar W. Effect of negative angle cannulation during cardiopulmonary bypass – A computational fluid dynamics study. Inter. J. Biomedical Eng. Sci. 2017. V. 4. № 2. P. 1–13. https://doi.org/10.5121/ijbes.2017.4201
  6. Svensson J., Gårdhagen R., Heiberg E. et. al. Feasibility of patient specific aortic blood flow CFD simulation // Lecture Notes in Computer Science “Medical Image Computing and Computer Assisted Intervention – MICCAI 2006”. 2006. V. 4190. P. 257–263. https://doi.org/10.1007/11866565_32
  7. Simão M., Ferreira J., Tomás A.C. et. al. Aorta ascending aneurysm analysis using CFD models towards possible anomalies // Fluids. 2017. V. 2. № 2. P. 31. https://doi.org/10.3390/fluids2020031
  8. Ku D.N. Blood flow in arteries // Annu. Rev. Fluid Mech. 1997. V. 29. № 1. P. 399–434. https://doi.org/10.1146/annurev.fluid.29.1.399
  9. Mueller T., Rengier F., Muller-Eschner M. et. al. Supra aortic blood flow distribution measured with phase-contrast MR angiography // European Society of Radiology. European Congress of Radiology (ECR 2012). 2012. https://dx.doi.org/10.1594/ecr2012/C-2020
  10. Shin E., Kim J.J., Lee S. et. al. Hemodynamics in diabetic human aorta using computational fluid dynamics // PLoS ONE. 2018. V. 13. № 8. P. e0202671. https://doi.org/10.1371/journal.pone.0202671
  11. Morris L., Delassus P., Callanan A. et. al. 3-D Numerical simulation of blood flow through models of the human aorta // J. Biomech. Eng. 2005. V. 127. № 5. P. 767. https://doi.org/10.1115/1.1992521
  12. Vlachopoulos C., O’Rourke M., Nichols W.W. McDonalds blood flow in arteries: Theoretical, experimental and clinical principles. London: CRC Press, 2011. 768 p. https://doi.org/10.1201/b1356
  13. Klipstein R., Firmin D., Underwood S. et. al. Blood flow patterns in the human aorta studied by magnetic resonance // Heart. 1987. V. 58. № 4. P. 316–323. https://doi.org/10.1136/hrt.58.4.316
  14. Stein P., Sabbah H. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves // Circulation Research. 1976. V. 39. № 1. P. 58–65. https://doi.org/10.1161/01.res.39.1.58
  15. Lipovka A.I., Karpenko A.A., Chupakhin A.P. et. al. Strength properties of abdominal aortic vessels: experimental results and perspectives // J. Appl. Mech. Tech. Phys. 2022. V. 63. № 2. P. 251–258. https://doi.org/10.1134/S0021894422020080
  16. Medvedev A.E., Erokhin A.D. Mathematical analysis of aortic deformation in aneurysm and wall dissection // Маth. Biol. Bioinform. 2023. V. 18 (Suppl). P. t94–t106. https://doi.org/10.17537/2023.18.t94
  17. Robinson W.P., Schanzer A., Li Y. et. al. Derivation and validation of a practical risk score for prediction of mortality after open repair of ruptured abdominal aortic aneurysms in a US regional cohort and comparison to existing scoring systems // J. Vascular Surgery. 2013. V. 57. № 2. P. 354–361. https://doi.org/10.1016/j.jvs.2012.08.120
  18. Backes D., Vergouwen M.D., Tiel Groenestege A.T. et. al. Phases score for prediction of intracranial aneurysm growth // Stroke. 2015. V. 46. № 5. P. 1221–1226. https://doi.org/10.1161/strokeaha.114.008198
  19. Attard M. Finite strain – isotropic hyperelasticity // Int. J. Solids Struct. 2003. V. 40. № 17. P. 4353–4378. https://doi.org/10.1016/S0020-7683(03)00217-8
  20. Fluid-Structure Interaction in a Network of Blood Vessels // Comsol Documentation. 18 p. https://doc.comsol.com/6.1/doc/com.comsol.help.models.sme.blood_vessel/blood_vessel.html
  21. Fadhil N.A., Hammoodi K.A., Jassim L. et. al. Multiphysics analysis for fluid–structure interaction of blood biological flow inside three-dimensional artery // Curved and Layered Structures. 2023. V. 10. № 1. P. 20220187. https://doi.org/10.1515/cls-2022-0187
  22. Caro C.G., Pedley T.J., Schroter R.C., Seed W.A. The mechanics of the circulation. Oxford: OUP Publ., 1978. 527 p.
  23. Khosravi A., Bani M.S., Bahreinizade H., Karimi A. A computational fluid–structure interaction model to predict the biomechanical properties of the artificial functionally graded aorta // Biosci. Rep. 2016. V. 36. № 6. P. e00431. https://doi.org/10.1042/BSR20160468
  24. Fedotova Ya.V., Epifanov R.Yu., Volkova I.I. et. al. Personalized numerical simulation of haemodynamics in abdominal aortic aneurysm: analysis of simulation sensitivity to the input boundary conditions // Thermophys. Aeromech. 2024. V. 31. № 2. P. 375–391. https://doi.org/10.1134/S0869864324020161
  25. Sabbah H.N., Hawkins E.T., Stein P.D. Flow separation in the renal arteries // Arteriosclerosis. 1984. V. 4. № 1. P. 28–33. https://doi.org/10.1161/01.atv.4.1.28
  26. Lee K., Shirshin E., Rovnyagina N. et. al. Dextran adsorption onto red blood cells revisited: single cell quantification by laser tweezers combined with microfluidics // Biomedical Optics Express. 2018. V. 9. № 6. P. 2755–2764. http://dx.doi.org/10.1364/BOE.9.002755
  27. Prostomolotov A.I., Verezub N.A. Mechanics of crystalline materials production processes. Moscow, MISiS, 2023. 568 p. (In Russian). https://doi.org/10.61726/5600.2024.15.25.001
  28. Funck C., Laun F.B., Wetscherek A. Characterization of the diffusion coefficient of blood // Magnetic Resonance in Medicine. 2018. V. 79. № 5. P. 2752–2758. https://doi.org/10.1002/mrm.26919
  29. Hund S.J., Antaki J.F. An extended convection diffusion model for red blood cell enhanced transport of thrombocytes and leukocytes // Phys. Med. Biol. 2009. V. 54. P. 6415–6435. https://doi.org/10.1088/0031-9155/54/20/024
  30. Bokeria L.A. Aortic aneurysms. Moscow, Medicine. 2001. 204 c.
  31. Foller M., Braun M., Qadri S.M. et. al. Temperature sensitivity of suicidal erythrocyte death // Eur. J. Clinical Investigation. 2010. V. 40. № 6. P. 534–540. https://doi.org/10.1111/j.1365-2362.2010.02296.x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Basic calculation scheme: (a) – model of the abdominal aorta, here the holes for blood inflow and outflow are shown: i = 1, 2, … 5; (b) – points at which calculations were performed; (c) – thinning of the aortic wall in the vicinity of a potential defect.

Жүктеу (229KB)
3. Fig. 2. Stress graphs for three variants of the calculation model: (a) – basic model (model 1); (b) – basic model with a thinned wall (model 2); (c) – basic model with a defect in the form of a hole (model 3). Dependencies 1, 2, 3, 4 and 5 are constructed for the points indicated in Fig. 1b.

Жүктеу (478KB)
4. Fig. 3. Stress ratios (stress in the case of a thinned wall to stress in the normal state) at the corresponding points. Dependencies 1, 2, 3, 4 and 5 are constructed for the points indicated in Fig. 1b.

Жүктеу (126KB)
5. Fig. 4. Visualization for models 1, 2, 3 of instantaneous states of blood flow at t = 2 s: (a) – velocity and (b) – pressure in the blood flow; (c) – field of displacements of the aortic wall.

Жүктеу (594KB)
6. Fig. 5. Visualization for models 1, 2, 3 of instantaneous states of blood flow at t = 2.5 s: (a) – velocity and (b) – pressure in the blood flow; (c) – field of displacements of the aortic wall.

Жүктеу (601KB)
7. Fig. 6. Components of the aorta: 1 – thoracic, 2 – abdominal.

Жүктеу (73KB)
8. Fig. 7. Abdominal aorta with saccular aneurysm.

Жүктеу (104KB)
9. Fig. 8. Schematic representation of an erythrocyte.

Жүктеу (31KB)
10. Fig. 9. Mathematical model of blood flow in the abdominal aorta with an aneurysm consisting of a large “sac” 4 and a small “sac” 5, here the cross-section of blood inflow 1 and the cross-section of its outflow 2, 3 are shown.

Жүктеу (29KB)
11. Fig. 10. Pulsating wave of flow velocity (a) and blood flow pattern (b) in the abdominal aorta, velocity pulsations in section 2 (c).

Жүктеу (212KB)
12. Fig. 11. Change in the concentration of erythrocytes, % (a), diagram of sections (b) and for them – graphs of the concentration of erythrocytes (c).

Жүктеу (233KB)

© Russian Academy of Sciences, 2025