On the equilibria and uniform rotations of a dumbbell-shaped body on a rough horizontal plane with two contact points

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A problem of motion of a dumbbell-shaped body on a horizontal rough plane is considered. It is assumed that the dumbbell is a weightless inextensible rod, with masses being concentrated at two points of it, and there is dry friction between these points and the plane. It is also assumed that a constant force acts perpendicular to the rod on some fixed point on it. The conditions under which the rod is at rest, as well as the conditions under which the rod uniformly rotates around one of its points of support, are determined. The relationship between the magnitude of the angular velocity of uniform rotation and the force providing such a rotation is revealed. Bifurcation diagrams are constructed and analyzed.

Full Text

Restricted Access

About the authors

A. A. Burov

FRC CSC RAS

Author for correspondence.
Email: jtm@narod.ru
Russian Federation, Moscow

V. I. Nikonov

FRC CSC RAS

Email: nikon_v@list.ru
Russian Federation, Moscow

E. S. Shalimova

FRC CSC RAS; Lomonosov Moscow State University

Email: ekateryna-shalimova@yandex.ru
Russian Federation, Moscow; Moscow

References

  1. Routh E.J. A treatise on analytical statics with numerous examples. V.1. Second edition. Cambridge: University Press. 1909. 392 p.
  2. Zhukovskii N.E. Equilibrium conditions for a rigid body based on a fixed plane with a certain area and able to move along this plane with friction // Collected Works: V. 1. Moscow-Leningrad: Gostekhteorizdat. 1949. P. 339–354 (in Russian).
  3. Pozharitskii G.K. Extension of the principle of Gauß to systems with dry (Coulomb) friction // J. Appl. Math. Mech. 1961. V. 25. № 3. P. 586–607.
  4. Smyshlyayev A.S., Chernousko F.L. The equilibrium conditions of a rod on a rough plane // J. Appl. Math. Mech. 2002. V. 66. № 2. P. 165–170.
  5. Zhuravlev V.F. 500 years of the history of the dry friction law // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. 2014. № 2. P. 21–31 (in Russian).
  6. Jellett J.H. A treatise on the theory of friction. Dublin: Hodges, Foster, and Co & L.: Macmillan and Co. 1872. 220 p.
  7. Painlevé P. Leçons sur le frottement. Paris: A.Hermann. 1895. 132 p.
  8. Bolotov E.A. The motion of a material plane figure subject to constraints with friction // Mat. Sbornik. l906. V. 25. № 4. P. 562–708 (in Russian).
  9. Andronov V.V., Zhuravlev V.F. Dry friction in problems of mechanics. R&C Dynamics, Institute of Computer Science, Moscow–Izhevsk. 2010. 184 p (in Russian).
  10. Ivanov, A. P. Fundamentals of the theory of systems with friction. R&C Dynamics, Institute of Computer Science, Moscow – Izhevsk. 2011. 304 p (in Russian).
  11. Sumbatov A. S., Yunin E. K. Selected problems of mechanics of systems with dry friction. Fizmatlit. Moscow. 2013. 200 p (in Russian).
  12. Rozenblat G.M. Dynamic systems with dry friction. R&C Dynamics, Institute of Computer Science, Moscow–Izhevsk. 2006. 203 p (in Russian).
  13. Rozenblat G.M. Dry friction and unilateral constraints in solid mechanics. URSS. Moscow. 2011. 204 p (in Russian).
  14. Ivanov A.P. Stability of Zhukovskii bench // Dokl. Phys. 2015. V. 60. No. 9, P. 405–406.
  15. Rozenblat G.M. Equilibrium of a Zhukovskii bench // Doklady Physics. 2017. V. 62. № 2. P. 95–101.
  16. Field P. On the motion of a disc with three supports on a rough plane // Phys. Rev. 1912. V. 35. P. 177–184.
  17. Rozenblat G.M. The integration of equations of motion of a body with three supports on a rough plane // Dokl. Phys. 2010. V. 55. № 12. P. 602–605.
  18. Rozenblat G.M. The motion of a body supported at three points on a rough plane // J. Appl. Math. Mech. 2011. V. 75. № 2. P. 176–179.
  19. Wittenburg J. Ebene Bewegungen bei flächenhaft verteilten Reibungskräften // Z. Angew. Math. Phys. 1970. Bd. 50. P. 637–640.
  20. Ishlinskii A.Yu, Sokolov B.N., Chernousko F.L. On motion of plane bodies with dry friction // Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1981. № 4. P. 17–28 (in Russian).
  21. Farkas Z., Bartels G., Unger T., Wolf D. Frictional coupling between sliding and spinning motion // Phys. Rev. Lett. 2003. V. 90. № 24. Art. 248302. P. 4.
  22. Weidman P.D., Malhotra C.P. Regimes of terminal motion of sliding spinning disks // Phys. Rev. Lett. 2005. V. 95. № 26. Art. 264303. P. 4.
  23. Treschev D.V., Erdakova N.N., Ivanova T.B. On the final motion of cylindrical solids on a rough plane // Rus. J. Nonlin. Dyn. 2012. V. 8. № 3. P. 585–603 (in Russian).
  24. Borisov A.V., Erdakova N.N., Ivanova T.B., Mamaev I.S. The dynamics of a body with an axisymmetric base sliding on a rough plane // Regul. Chaotic Dyn. 2014. V. 19. № 6. P. 607–634.
  25. Borisov A.V., Karavaev Yu.L., Mamaev I.S., Erdakova N.N., Ivanova T. B., Tarasov V.V. Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane // Regul. Chaotic Dyn. 2015. V. 20. № 5. P. 518–541.
  26. Johnston G.W. The dynamics of a curling stone // Can. Aeronaut. Space J. 1981. V. 27. № 2. P. 144–160.
  27. Denny M. Curling rock dynamics // Canadian J. Phys. 1998. V. 76. № 4. P. 295–304.
  28. Penner A.R. The physics of sliding cylinders and curling rocks // Amer. J. Phys. 2001. V. 69. № 3. P. 332–339.
  29. Ivanov A.P., Shuvalov N.D. On the motion of a heavy body with a circular base on a horizontal plane and riddles of curling // Rus. J. Nonlin. Dyn. 2011. Vol. 7. № 3. P. 521–530 (in Russian).
  30. Chernousko F.L. Equilibrium conditions for a body on a rough plane // Izv. RAN. MTT [Mechanics of Solids]. 1988. № 6. P. 6–17 (in Russian).
  31. Leine R.I., van Campen D.H. Bifurcation phenomena in non-smooth dynamical systems // Europ. J. Mechanics A. Solids. 2006. V. 25. P. 595–616.
  32. Leine R.I. Bifurcations of equilibria in non-smooth continuous systems // Physica D. 2006. V. 223. P. 121–137.
  33. Ivanov A. Bifurcations in systems with friction: Basic models and methods // Regul. Chaotic Dyn. 2009. V. 14. № 6. P. 656–672.
  34. Burov A.A. On bifurcations of relative equilibria of a heavy bead sliding with dry friction on a rotating circle // Acta mechanica. 2010. V. 212. P. 349–354. https://doi.org/10.1007/s00707-009-0265-1
  35. Burov A.A., Yakushev I.A. Bifurcations of the relative equilibria of a heavy bead on a rotating hoop with dry friction // J. Appl. Math. Mech. 2014. V. 78. № 5. P. 460–467. https://doi.org/10.1016/j.jappmathmech.2015.03.004
  36. Balandin D.V., Shalimova E.S. Bifurcations of the relative equilibria of a heavy bead on a hoop uniformly rotating about an inclined axis with dry friction // J. Appl. Math. Mech. 2015. V. 79. № 5. P. 440–445. https://doi.org/10.1016/j.jappmathmech.2016.03.004
  37. Burov A.A., Shalimova E.S. On the motion of a heavy material point on a rotating sphere (dry friction case) // Regular and Chaotic Dynamics. 2015. V. 20. № 3. P. 225–233. https://doi.org/10.1134/S1560354715030028
  38. Burov, A.A., Shalimova, E.S. Bifurcations of relative equilibria of a heavy bead on a rotating parabolic bowl with dry friction // Mech. Solids, 2016. V. 51. P. 395–405. https://doi.org/10.3103/S0025654416040038
  39. Shalimova E.S. On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis) // Rus. J. Nonlin. Dyn., 2016. V. 12. № 3. P. 369–383 (in Russian). https://doi.org/10.20537/nd1603006
  40. Burov A.A., Kosenko I.I., Shalimova E.S. Relative equilibria of a massive point on a uniformly rotating asteroid // Dokl. Phys. 2017. V. 62. № 7. P. 359–362. https://doi.org/10.1134/S1028335817070084
  41. Burov A.A., Nikonov V.I., Shalimova E.S. On the motion of a point particle on a homogeneous gravitating ball with a spherical cavity in the presence of dry friction // Mechanics of Solids. 2021. V. 56. № 8. P. 1587–1598. https://doi.org/10.3103/S0025654421080045
  42. Burov A.A., Nikonov V.I., Shalimova E.S. On relative equilibria on the surface of a spherical cavity inside a uniformly rotating gravitating ball // Mechanics of Solids. 2022. V. 57. № 8. P. 1862–1872. https://doi.org/10.3103/S002565442208009X
  43. Burov A. A., Nikonov V. I. Relative equilibria of a heavy point on a uniformly rotating inclined plane // Mechanics of Solids. 2023. V. 58. No. 1. P. 131–139. https://doi.org/10.3103/S0025654422600817.
  44. Burov A. A., Nikonov V. I. On the relative equilibria of a heavy bead on a uniformly rotating rough spoke // Mechanics of Solids. 2023. V. 58. No. 3. P. 748–753. https://doi.org/10.3103/S0025654422600763.
  45. Dmitriev N.N. Motion of rod with shifted center of mass over plane with anisotropic friction // Journal of friction and wear. 2007. V. 28. № 4. P. 368–374.
  46. Dmitriev N.N. Motion of material point and equilibrium of two-mass system under asymmetric orthotropic friction // Journal of friction and wear. 2013. V. 34. № 6. P. 429–437.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A rod on a rough horizontal plane under the action of external forces.

Download (19KB)
3. 2. The equilibrium of the rod on a rough horizontal plane under the action of external forces.

Download (26KB)
4. 3. The set of points on the plane (c, f ), where inequalities (3.5) are fulfilled, at 0 ≤ K < 1 (a), K = 1 (b), K > 1 (c).

Download (91KB)
5. 4. Distribution of forces in the case of uniform rotation of the rod around point A.

Download (32KB)
6. Fig. 5. Distribution of forces in the case of uniform rotation of the rod around point B.

Download (28KB)
7. Fig. 6. Distribution of forces in the case of uniform rotation of the rod around the O point.

Download (30KB)
8. 7. The case of mA = mB, K = 1.

Download (55KB)
9. 8. The case of mA = mB, K = 2.

Download (70KB)
10. Fig. 9. The case of mA = mB, K = 1/2.

Download (68KB)

Copyright (c) 2025 Russian Academy of Sciences