The Effect of Various Types of Mother Stress on the Some Components of the Brain Redox System in Male and Female Rats on the 20th Day of the Embryonic Development Period

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of prenatal stress, post-traumatic stress disorder, and their combined effect in rat mothers on the condition of the pituitary-adrenal system and the brain redox balance in 20-day-old embryos was studied. Mother’s prenatal stress result in increase the level’s corticosterone in the blood and decrease the level of reduced glutathione in the brain of male embryos. In female embryos, the level of Fenton-induced products of proteins oxidative modification increased and the reduced glutathione level in the brain decreased. Modeling of post-traumatic stress disorder in mother result in an increase in the corticosterone level in the blood, and a decrease in the level of Fenton-induced products of proteins oxidative modification in the brain of male embryos. In female embryos, the levels of products of spontaneous and Fenton-induced oxidative modifications of proteins in the brain increased. The combined effect of two types of stress in mother result in an increase in levels corticosterone in the blood, a decrease in the spontaneous products level and an increase in Fenton-induced products level of proteins oxidative modifications, and a decrease in the reduced glutathione level in the male embryos brain. In female embryos, all the studied indicators of proteins oxidative modification products in the brain increased. Thus, all three studied types of stress in the mother cause changes in the hypothalamic-pituitary-adrenal system and in the brain redox balance in 20-day-old embryos. These changes are different in male and female embryos, and in most of the studied indicators, the pattern of differences is inverted in relation to the control group. Such changes at embryos can result in negative changes in the neuronal organization in adult offspring of stressed rat mothers.

Texto integral

Acesso é fechado

Sobre autores

A. Vyushina

Pavlov Institute of Physiology of the Russian Academy of Scienes

Email: pritvorovaav@infran.ru
Rússia, Saint Petersburg

A. Pritvorova

Pavlov Institute of Physiology of the Russian Academy of Scienes

Autor responsável pela correspondência
Email: pritvorovaav@infran.ru
Rússia, Saint Petersburg

S. Pivina

Pavlov Institute of Physiology of the Russian Academy of Scienes

Email: pritvorovaav@infran.ru
Rússia, Saint Petersburg

V. Akulova

Pavlov Institute of Physiology of the Russian Academy of Scienes

Email: pritvorovaav@infran.ru
Rússia, Saint Petersburg

N. Ordyan

Pavlov Institute of Physiology of the Russian Academy of Scienes

Email: pritvorovaav@infran.ru
Rússia, Saint Petersburg

Bibliografia

  1. Mattern F., Post A., Solger F., O’Leary A., Slattery D.A., Rief A., Haaf Th. // Behav.Brain Res. 2019. V. 359. № 1. Р. 143–148. doi: 10.1016/j.bbr.2018.10.037.
  2. Дыгало Н.Н., Науменко Е.В. // Онтогенез. 1984. Т. 15. № 2. С. 215–218.
  3. Ордян Н.Э., Пивина С.Г. // Рос.Физиол.Журн.им.И.М.Сеченова. 2003. Т. 89. № 1. С. 52–59. doi: 10.1023/b:neab.0000028286.83083.73.
  4. Krontira A.C., Cruceanu C., Binder E.B. // Trends. Neurosci. 2020. V. 43. № 6. P. 394–405. doi: 10.1016/j.tins.2020.03.008.
  5. Дыгало Н.Н. // Журн. высш. нерв. Деят. 1999. Т. 49. Вып. 3. С. 489–494.
  6. Yao S., Lopes-Tello J., Sferruzzi-Perri A.N. // Biology of Reproduction. 2021. V. 104. № 4. Р. 745–770. doi: 10.1093/biolre/ioaa232.
  7. Signorello M.G., Ravera S., Leoncini G. // Int. J.Mol. Sci. 2024. V. 25. № 7. Р. 1–14. https://doi.org/10.3390/ijms25073776
  8. Mikhed Y., Gorlach A., Knaus U.S., Daiber A. // Red. Biol. 2015. V. 5. P. 275–289. doi: 10.1016/j.redox.2015.05.008.
  9. Timme-Laragy A.R., Goldstone J.V., Imhoff B.R., Stegeman J.J., Hahn M.E., Hansen J.M. // Free rad. Biol. Med. 2013. V. 61. P. 1–30. doi: 10.1016/j.freeradbiomed.2013.06.011.
  10. Thompson L.P., Al-Hasan Y. // J. Pregnancy. 2012. V. 2012. P.1–8. doi: 10.1155/2012/582748.
  11. Schieber M., Chandel N.C. // Curr. Biol. V. 24. № 10. P. 453–462. doi: 10.1016/j.cub.2014.03.034.
  12. Лущак В.И. // Биохимия. 2007. Т. 72. № 8. С. 995–1016.
  13. Cao-Lei L., Rooij S.R., King S., Matthews S.G., Metz G.A.S., Roseboom T.J., Szyf M. // Neurosci. Biobehav. 2020. V. 117. P. 198–210. doi: 10.1016/j.neubiorev.2017.05.016.
  14. Кулинский В.И., Колесниченко Л.С. // Биомедицинская химия. 2010. Т. 56. № 6. С. 675–662. doi: 10.18097/PBMC20105606657.
  15. Hansen J.M., Harris C. // Biochim. Biophys. Acta. 2015. V. 1850. № 8. P. 1527–42. doi: 10.1016/j.bbagen.2014.12.001.
  16. Huerta-Cervantes M., Peña-Montes D.J., López-Vázquez M.A., Montoya-Pérez R., Cortés-Rojo C., Olvera-Cortés M.E., Saavedra-Molina A. Nutrients. 2021. V. 13. № 5. P. 1–15. doi: 10.3390/nu13051575.
  17. Karanikas E., Daskalakis N.P., Agorastos A. // Brain Sci. 2021. V. 11. № 6. Р. 1–28. doi: 10.3390/brainsci11060723.
  18. Zhang X.G., Zhang H., Liang X.L., Liu Q., Wang H.Y., Cao B., Cao J., Liu S., Long Y.J., Xie W.Y., Peng D.Z. // Genet. Mol. Res. 2016. V. 15. № 3. P. 1–17. doi: 10.4238/gmr.15039009.
  19. Chagas L.A., Batista T.H., Ribeiro A.C.A.F., Ferrari M.S., Vieira J.S., Rojas V.C.T., Kalil-Cutti B., Elias L.L.K., Giusti-Paiva A., Vilela F.C. // Behav. Brain Res. 2021. V. 399. P. 1–9. doi: 10.1016/j.bbr.2020.113026.
  20. Кострова Т.А. Биохимические и поведенческие показатели в отдаленный период после острых отравлений нейротоксикантами и их фармакологическая коррекция. Дисс… канд. мед. Наук. СПб: Институт токсикологии ФМБА, 2019. 188 с.
  21. Ордян Н.Э., Смоленский И.В., Пивина С.Г., Акулова В.К. // Журн. высш. нервн. деят. 2013. Т. 63. № 2. С. 280–289. doi: 10.7868/S0044467713020068.
  22. Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н. Методы оценки свободнорадикального окисления и антиоксидантной системы организма. СПб: ИКФ “Фолиант”. 2000. 104 с.
  23. Кузьменко Д.И., Лаптев Б.И. // Вопр. мед. химии. 1999. Т. 45. № 1. С. 47–54. PMID: 10205828.
  24. Назаров И.Н., Казицина Л.А., Зарецкая И.И. // Журн. общ. химии. 1956. Т. 27. № 3. С. 606–623.
  25. Lovlin V.N., Vinichenko E.L., Sevostianov I.A. // The Journal of scientific articles “Health and Education Millennium”. 2017. V. 19. № 7. Р.113–115.
  26. Yehuda R., Bierer L.M. // Prog. Brain Res. 2008. V. 167. P. 121–135. doi: 10.1016/S0079-6123(07)67009-5.
  27. Ордян Н.Э., Пивина С.Г., Миронова В.И., Ракицкая В.В., Акулова В.К. // Росс. Физиол. Журн. им. И.М. Сеченова. 2014. Т. 100. № 12. С. 1409–1420.
  28. Louvart H., Maccari S., Vaiva G., Darnaudery M. // Psychoneuroendocrinology. 2009. V. 34. P. 786–790. doi: 10.1016/j.psyneuen.2008.12.002.
  29. Sze Y., Brunton P.J. // Eur. J. Neuroscience. 2019. V. 52. P. 2487–2515. doi: 10.1111/ejn.14615.
  30. Soares-Cunha C., Coimbra B., Borges S., Domingues A.V., Silva D., Sousa N., Rodrigues A.J. // Front. Behav. Neurosci. 2018. V. 12. P. 1–15. doi: 10.3389/fnbeh.2018.00129.
  31. Отеллин В.А., Хожай Л.И., Ордян Н.Э. // Пренатальные стрессорные воздействия и развивающийся головной мозг. СПб.: “Десятка”, 2007. 240 с.
  32. Вьюшина А.В., Притворова А.В., Флеров М.А. // Нейрохимия. 2012. Т. 29. № 3. С. 240–246.
  33. Reed E.C., Case A.J. // Front. Physiol. 2023. P. 1–13. doi: 10.3389/fphys.2023.1130861.
  34. Mora S., Dussaubat N., Diaz-Veliz G. // Psychoneuroendocrinology. 1996. V. 21. № 7. P. 609–620. doi: 10.1016/s0306-4530(96)00015-7.
  35. Aiken C.E., Tarry-Adkins J.L., Spiroski A., Nuzzo A.M., Ashmore T.J., Rolfo A., Sutherland M.J., Camm E.J., Giussani D.A., Ozanne S.E. // The FASEB Journ. 2019. V. 33. № 6. Р. 7758–7766. doi: 10.1096/fj.201802772R.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the experiment

Baixar (213KB)
3. Fig. 2. Serum corticosterone levels in embryos (males - shaded bars, females - light bars) and their mothers (grey bars) in control and experimental groups. a - embryos; b - mothers, * - statistically significant differences from control, p < 0. 05; # - statistically significant intersex differences, p < 0.05; ■ - statistically significant differences from male embryos, p < 0.05; - - statistically significant differences from female embryos, p < 0.05. Data are presented as mean + standard deviation

Baixar (100KB)
4. Fig. 3. SOMP levels of primary products in the brain in embryos (males - shaded bars, females - light-coloured bars) in control and experimental groups. - statistically significant differences from control in female embryos; p < 0.05; # - statistically significant intersex differences, p < 0.05; data are presented as mean + standard deviation

Baixar (75KB)
5. Fig. 4. FOMP level of primary products in the brain of embryos (males - shaded bars, females - light-coloured bars) in control and experimental groups. * - statistically significant differences from control in male embryos p < 0.05; - - statistically significant differences from control in female embryos; p < 0.05; # - statistically significant intersex differences, p < 0.05; data are presented as mean + standard deviation

Baixar (52KB)
6. Fig. 5. SOMP level of secondary products in the brain of embryos (males - shaded bars, females - light-coloured bars) in control and experimental groups. * - statistically significant differences from control in male embryos p < 0.05; - - statistically significant differences from control in female embryos; p < 0.05; # - statistically significant intersex differences, p < 0.05; data are presented as mean + standard deviation

Baixar (67KB)
7. Fig. 6. FOMP level of secondary products in the brain of embryos (males - shaded bars, females - light-coloured bars) in control and experimental groups. * - statistically significant differences from control in male embryos p < 0.05; - - statistically significant differences from control in female embryos; p < 0.05; # - statistically significant intersex differences, p < 0.05; data are presented as mean + standard deviation

Baixar (59KB)
8. Fig. 7. Content of reduced glutathione in the brain of embryos (males - shaded bars, females - light-coloured bars) in control and experimental groups. * - statistically significant differences from control in male embryos p < 0.05; - - statistically significant differences from control in female embryos; p < 0.05; # - statistically significant intersex differences, p < 0.05; data are presented as mean + standard deviation

Baixar (64KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024