О некоторых методах улучшения качества изображений магнитно-силовой микроскопии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассмотрены некоторые факторы, влияющие на качество изображений, получаемых методом магнитно-силовой микроскопии. Основное внимание уделено ухудшению качества сканов, вызванному загрязнением зонда. Показано, что загрязнение может происходить как в процессе сканирования, так и при хранении зонда. Эти два разных источника загрязнения по-разному проявляются на изображениях, и для их устранения необходимо использовать различные методы. Одним из вероятных источников загрязнения зондов является гель, используемый в коробках для хранения и транспортировки зондов. Магнитное покрытие кантилеверов может являться катализатором химической реакции, приводящей к образованию жидких углеводородов. Жидкие загрязнители выступают в роли функционализаторов зонда. При отведении зонда от поверхности между ними может сохраняться механическая связь за счет молекулярных цепочек, адсорбированных на зонде. В зависимости от степени загрязнения наличие такой связи может приводить либо к появлению полос на изображении магнитной структуры, либо к полному исчезновению магнитного контраста. В настоящей работе выявлено, что модификация стандартной процедуры магнитных измерений – введение дополнительного отскока в двухпроходную методику, позволяет полностью устранить паразитное влияние данного эффекта.

Об авторах

А. Г. Темирязев

Фрязинский филиал Института радиотехники и электроники
им. В.А. Котельникова РАН

Автор, ответственный за переписку.
Email: temiryazev@gmail.com
Россия, 141190, Фрязино

М. П. Темирязева

Фрязинский филиал Института радиотехники и электроники
им. В.А. Котельникова РАН

Email: temiryazev@gmail.com
Россия, 141190, Фрязино

Список литературы

  1. Martin Y., Wickramasinghe H.K. // Appl. Phys. Lett. 1987. V. 50. P. 1455. https://www.doi.org/10.1063/1.97800
  2. Sáenz J.J., García N., Grütter P., Meyer E., Heinzelmann H., Wiesendanger R., Rosenthaler L., Hidber H.R., Güntherodt H.-J. // J. Appl. Phys. 1987. V. 62. P. 4293. https://www.doi.org/10.1063/1.339105
  3. Magnetic Microscopy of Nanostructures // Ed. Hopster H., Oepen H.P. Springer-Verlag Berlin Heidelberg, 2005.
  4. Vokoun D., Samal S., Stachiv I. // Magnetochemistry. 2022. V. 8. P. 42. https://doi.org/10.3390/magnetochemistry8040042
  5. Kazakova O., Puttock R., Barton C., Corte-Leon H., Jaafar M., Neu V., Asenjo A. // J. Appl. Phys. 2019. V. 125. P. 060901. https://www.doi.org/10.1063/1.5050712
  6. Binnig G., Quate C.F., Gerber C. // Phys. Rev. Lett. 1986. V. 56. P. 930. https://www.doi.org/10.1103/physrevlett.56.930
  7. Noncontact Atomic Force Microscopy // Ed. Morita S., et al. Springer Verlag: Berlin, Heidelberg, New York, 2002. https://doi.org/10.1007/978-3-642-56019-4
  8. Garcia R. Amplitude Modulation Atomic Force Microscopy. WileyVCH: Weinheim, 2010. https://www.doi.org/10.1002/9783527632183
  9. Magneto-Optics // Ed. Sugano S., et al. Springer-Verlag Berlin Heidelberg, 2000.
  10. Kimel A. et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 463003. https://doi.org/10.1088/1361-6463/ac8da0
  11. Chapman J.N. // J. Phys. D.: Appl. Phys. 1984. V. 17. P. 623. https://www.doi.org/10.1088/0022-3727/17/4/003
  12. Jin T., Lingyao K., Weiwei W., Haifeng D., Mingliang T. // Chinese Phys. B. 2019. V. 28. № 8. P. 087503. https://www.doi.org/10.1088/1674-1056/28/8/087503
  13. Zhang X., Nguyen K., Turgut E., Chen Z., Chang C., Shao Y., Fuchs G., Muller D. // Microscopy Microanalysis. 2022. V. 28. Iss. S1. P. 1698. https://www.doi.org/10.1017/S1431927622006742
  14. Mamin H.J., Rugar D., Stern J.E., Fontana R.E., Kasiraj P. // Appl. Phys. Lett. 1989. V. 55. P. 318. https://www.doi.org/10.1063/1.101898
  15. Zhao T., Hou C., Fujiwara H., Cho H., Harrell J.W., Khapikov A. // J. Appl. Phys. 2000. V. 87. P. 6484. https://www.doi.org/10.1063/1.372745
  16. Grütter P., Liu Y., LeBlanc P., Dürig U. // Appl. Phys. Lett. 1997. V. 71. P. 279. https://www.doi.org/10.1063/1.119519
  17. Liu Y., Grütter P. // J. Appl. Phys. 1998. V. 83. P. 7333. https://www.doi.org/10.1063/1.367825
  18. Темирязев А.Г., Саунин С.А., Сизов В.Е., Темирязева М.П. // Известия РАН. Серия физическая. 2014. Т. 78. № 1. С. 78. https://www.doi.org/10.7868/S0367676514010219
  19. Gartside J.C., Burn D.M., Cohen L.F., Branford W.R. // Sci. Rep. 2016. V. 6. P. 32864. https://www.doi.org/10.1038/srep32864
  20. Здоровейщев А.В., Дорохин М.В., Вихрова О.В., Демина П.Б., Кудрин А.В., Темирязев А.Г., Темирязева М.П. // Физика твердого тела. 2016. Т. 58. № 11. С. 2186. https://www.doi.org/10.21883/ftt.2016.11.43737.8k
  21. Темирязев А.Г., Темирязева М.П., Здоровейщев А.В., Вихрова О.В., Дорохин М.В., Демина П.Б., Кудрин А.В. // Физика твердого тела. 2018. Т. 60. № 11. С. 2158. https://www.doi.org/10.21883/FTТ.2018.11.46657.12NN
  22. Yu J., Ahner J., Weller D. // J. Appl. Phys. 2004. V. 96. P. 494. https://www.doi.org/10.1063/1.1757029
  23. Martínez-Martín D., Jaafar M., Pérez R., Gómez-Herrero J., Asenjo A. // Phys. Rev. Lett. 2010. V. 105. P. 257203. https://www.doi.org/10.1103/PhysRevLett.105.257203
  24. Li L.H., Chen Y. // J. Appl. Phys. 2014. V. 116. P. 213904. https://www.doi.org/10.1063/1.4903040
  25. Jaafar M., Iglesias-Freire O., Serrano-Ramón L., Ibarra M.R., de Teresa J.M., Asenjo A. // Beilstein J. Nanotechnol. 2011. V. 2. P. 552. https://www.doi.org/10.3762/bjnano.2.59
  26. Angeloni L., Passeri D., Reggente M., Mantovani D., Rossi M. // Sci. Rep. 2016. V. 6. P. 26293. https://www.doi.org/10.1038/srep26293
  27. Krivcov A., Junkers T., Möbius H. //. J. Phys. Commun. 2018. V. 2. P. 075019. https://www.doi.org/10.1088/2399-6528/aad3a4
  28. Fuhrmann M., Musyanovych A., Thoelen R., von Bomhard S., Möbius H. // Nanomaterials 2020. V. 10. P. 2486. https://www.doi.org/10.3390/nano10122486
  29. Темирязев А.Г., Борисов В.И., Саунин С.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. № 7. С. 93. https://www.doi.org/10.7868/S0207352814050163
  30. Temiryazev A.G., Krayev A.V., Temiryazeva M.P. // Beilstein J. Nanotechnology. 2021. V. 12. P. 1226. https://www.doi.org/10.3762/bjnano.12.90
  31. Sirghi L., Kylián O., Gilliland D., Ceccone G., Rossi F. // J. Phys. Chem. B. 2006. V. 110. № 51. P. 25975. https://www.doi.org/10.1021/jp063327g
  32. Ievlev A.V., Brown C., Burch M.J., Agar J.C., Velarde G.A., Martin L.W., Maksymovych P., Kalinin S.V., Ovchinnikova O.S. // Anal. Chem. 2018. V. 90. № 5. P. 3475. https://www.doi.org/10.1021/acs.analchem.7b05225
  33. Мордкович В., Синева Л., Кульчаковская Е., Асалиева Е. // Катализ в промышленности. 2015. Т. 15. № 5. С. 23. https://www.doi.org/10.18412/1816-0387-2015-5-23-45

Дополнительные файлы


© А.Г. Темирязев, М.П. Темирязева, 2023