Study of the Influence of Ferromagnetic Impurity Concentration on Magnetic Properties of Binary Palladium–Cobalt Alloy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A comparative study of the magnetic properties of a palladium–cobalt alloy with an impurity content of up to 0.05 at. % was made using calculations based on the density functional theory and experimental methods. It was found that the alloys had ferromagnetic ordering, which depended on the impurity concentration. At very low concentrations, less than 1 at. %, the magnetic moment per impurity atom can reach 25 µB.

全文:

受限制的访问

作者简介

I. Gumarova

Kazan Federal University

编辑信件的主要联系方式.
Email: iipiyanzina@kpfu.ru
俄罗斯联邦, Kazan

A. Gumarov

Kazan Federal University

Email: iipiyanzina@kpfu.ru
俄罗斯联邦, Kazan

I. Yanilkin

Kazan Federal University

Email: iipiyanzina@kpfu.ru
俄罗斯联邦, Kazan

参考

  1. Fallot M. // Ann. Phys. 1938. V. 11. P. 291. https://www.doi.org/10.1051/anphys/193811100291
  2. Crangle J. // Philos. Mag. 1960. V. 5. P. 335. https://www.doi.org/10.1080/14786436008235850
  3. Nieuwenhuys G.J. // Adv. Phys. 1975. V. 24. P. 515. https://www.doi.org/10.1080/00018737500101461
  4. Bagguley D.M.S, Robertson J.A. // J. Phys. F: Met. Phys. 1974.V. 4. P. 2282. https://www.doi.org/10.1088/0305-4608/4/12/023
  5. Bagguley D.M.S, Crossley W.A., Liesegang J. // Proc. Phys. Soc. 1967. V. 90. P. 1047. https://www.doi.org/10.1088/0370-1328/90/4/316
  6. Рязанов В.В. // УФН. 1999. Т. 169. С. 920. https://www.doi.org/10.3367/UFNr.0169.199908g.0920
  7. Larkin T.I., Bol’ginov V.V., Stolyarov V.S, Ryazanov V.V., Vernik I.V., Tolpygo S.K., Mukhanov OA. // Appl. Phys. Lett. 2012. V. 100. P. 222601. https://www.doi.org/10.1063/1.4723576
  8. Soloviev I.I., Klenov N.V., Bakurskiy S.V., Kupriyanov M.Y., Gudkov A.L., Sidorenko A.S. // Beilstein J. Nanotechnol. 2017. V. 8. P. 2689. https://www.doi.org/10.3762/bjnano.8.269
  9. Esmaeili A., Yanilkin I.V., Gumarov A.I., Vakhitov I.R., Yusupov R.V., Tatarsky D.A., Tagirov L.R. // Sci. China Mater. 2021. V. 64. P. 1246. https://www.doi.org/10.1007/s40843-020-1479-0
  10. Mohammed W.M., Yanilkin I.V., Gumarov A.I., Kiiamov A.G., Yusupov R.V., Tagirov L.R. // Beilstein J. Nanotechnol. 2020. V.11. P. 807. https://www.doi.org/10.3762/bjnano.11.65
  11. Yanilkin I.V., Mohammed W.M., Gumarov A.I., Kiia-mov A.G., Yusupov R.V., Tagirov L.R. // Nanomaterials 2021. V. 11. P. 64. https://www.doi.org/10.3390/nano11010064
  12. Gumarov A.I., Yanilkin I.V., Yusupov R.V., Kiiamov A.G., Tagirov L.R., Khaibullin R.I. // Mater. Lett. 2021. V. 305. P. 130783. https://www.doi.org/10.1016/j.matlet.2021.130783
  13. Gumarov A.I., Yanilkin I.V., Rodionov A.A., Gabbasov B.F., Yusupov R.V., Aliyev M.N., Tagirov L.R. // Appl. Magn. Reson. 2022. V. 53. P. 875. https://www.doi.org/10.1007/s00723-022-01464-0
  14. Hohenberg P., Kohn W. // Phys. Rev. 1964. V. 136. P. B864. https://www.doi.org/10.1103/PhysRev.136.B864
  15. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. P. A1133. https://www.doi.org/10.1103/PhysRev.140.A1133
  16. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://www.doi.org/10.1103/PhysRevLett.77.3865
  17. Blöchl P.E. // Phys. Rev. B. 1994. V. 50. P. 17953. https://www.doi.org/10.1103/PhysRevB.50.17953
  18. Kresse G., Furthmüller J. // Comp. Mater. Sci. 1996. V. 6. P. 15. https://www.doi.org/10.1016/0927-0256(96)00008-0
  19. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54 P. 11169. https://www.doi.org/10.1103/PhysRevB.54.11169
  20. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
  21. MedeA version 3.7; MedeA is a registered trademark of Materials Design, Inc., San Diego, USA.
  22. Dudarev S.L., Botton G.A., Savrasov S.Y., Humphreys C.J., Sutton A.P. // Phys. Rev. B. 1998. V. 57. № 3. P. 1505. https://www.doi.org/10.1103/PhysRevB.57.1505
  23. Calderon C.E., Plata J.J., Toher C. et al. // Comp. Mater. Sci. 2015. V. 108. P. 233. https://www.doi.org/10.1016/j.commatsci.2015.07.019
  24. Piyanzina I., Gumarov A., Khaibullin R., Tagirov L. // Crystals. 2021. V. 11. P. 1257. https://www.doi.org/10.3390/cryst11101257
  25. Himpsel F.J., Ortega J.E., Mankey G.J., Willis R.F. // Magn. Nanostructures, Adv. Phys. 1998. V. 47. P. 511. https://www.doi.org/10.1080/000187398243519

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. View of the cell used in the modelling. There is one cobalt atom per 107 palladium atoms (the number of impurity atoms was increased to simulate a higher concentration). The ferromagnetic impurity polarises the matrix atoms in the vicinity. Palladium atoms with the highest magnetic moments are marked in the figure

下载 (197KB)
3. Fig. 2. Dependences of the experimental magnetisation (1) and the induced magnetic moment per cobalt atom on the Co impurity concentration: DFT calculation (2); experiment (3)

下载 (89KB)
4. Fig. 3. Dependences of the induced magnetic moment on palladium atoms (average (1) and maximum (2) values) and of the average magnetic moment on cobalt atoms (3) obtained by DFT calculations as a function of the concentration of ferromagnetic impurity cobalt

下载 (69KB)
5. Fig. 4. Dependence on the ferromagnetic impurity concentration obtained by DFT calculations: magnetic moment per impurity atom in the palladium-cobalt system (1); average magnetic moment on the cobalt atom (2)

下载 (55KB)

版权所有 © Russian Academy of Sciences, 2024