Tetraoxa[8]circulene monolayer as hydrogen storage material: model with Boys–Bernardi corrections within density functional theory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The parameters of molecular hydrogen adsorption on a tetraoxa[8]circulene monolayer were studied using the density functional theory with dispersion interaction corrections (semi-empirical and analytical). The calculations were carried out using two different approaches to the system wave function representation: atomic-like orbital basis set and plane wave basis. Utilizing a less computationally expensive pseudoatomic basis, it is possible to obtain results for molecular hydrogen adsorption consistent with values calculated with plane waves if the atomic-like basis is optimized and basis set superposition error is corrected for both hydrogen binding energy and geometrical characteristics. Otherwise, the H2 binding energy will be overestimated by 4–6 times (sometimes even more, by 20); and the hydrogen-monolayer distance will be underestimated by 10-20%. The obtained optimized parameters of the pseudoatomic basis set can be used for further study of the modified forms of the tetraoxa[8]circulene monolayer. Moreover, our calculations showed that the hydrogen binding to a pristine tetraoxa[8]circulene monolayer is predominantly van der Waals with an energy of 60–90 meV, which is several times less than the desired range of 200–600 meV. To achieve such values, it will be necessary to modify the surface of the monolayer, creating more active sorption cites, for example, by decorating it with metals or applying structural defects.

Full Text

Restricted Access

About the authors

E. V. Anikina

Institute of Natural Sciences and Mathematics, South Ural State University

Author for correspondence.
Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk

D. V. Babailova

Institute of Natural Sciences and Mathematics, South Ural State University

Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk

M. S. Zhilin

Institute of Natural Sciences and Mathematics, South Ural State University

Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk

V. P. Beskachko

Institute of Natural Sciences and Mathematics, South Ural State University

Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk

References

  1. Simanullang M., Prost L. // Int. J. Hydrogen Energy. 2022. V. 47. № 69. P. 29808. https://www.doi.org/10.1016/j.ijhydene.2022.06.301
  2. Wang Y., Yang P., Zheng L., Shi X., Zheng H. // Energy Storage Materials. 2020. V. 26. P. 349. https://doi.org/10.1016/j.ensm.2019.11.006
  3. Anglada E., Soler J.M., Junquera J., Artacho E. // Phys. Rev. B. 2002. V. 66. № 20. P. 205101. https://www.doi.org/10.1103/PhysRevB.66.205101
  4. Ferre-Vilaplana A. // J. Chem. Phys. 2005. V. 122. № 10. P. 104709. https://www.doi.org/10.1063/1.1859278
  5. Vilela Oliveira D., Laun J., Peintinger M.F., Bre- dow T. // J. Comput. Chem. 2019. V. 40. № 27. P. 2364. https://www.doi.org/10.1002/jcc.26013
  6. Begunovich L.V., Kuklin A.V., Baryshnikov G.V., Valiev R.R., Ågren H. // Nanoscale. 2021. V. 13. № 9. P. 4799. https://www.doi.org/10.1039/D0NR08554E
  7. Fritz P.W., Chen T., Ashirov T., Nguyen A.D., Dincă M., Coskun A. // Angew. Chemie. 2022. V. 61. № 17. P. e202116527. https://www.doi.org/10.1002/anie.202116527
  8. Baryshnikov G.V., Minaev B.F., Karaush N.N., Minae-va V.A. // RSC Adv. 2014. V. 4. № 49. P. 25843. https://www.doi.org/10.1039/c4ra02693d
  9. Karaush-Karmazin N., Baryshnikov G., Minaeva V., Panchenko O., Minaev B. // Comput. Theor. Chem. 2022. V. 1217. P. 113900. https://www.doi.org/10.1016/j.comptc.2022.113900
  10. Artacho E., Anglada E., Diéguez O., Gale J.D., García A., Junquera J., Martin R.M., Ordejón P., Pruneda J.M., Sánchez-Portal D., Soler J.M. // J. Phys. Condens. Matter. 2008. V. 20. № 6. P. 064208. https://www.doi.org/10.1088/0953-8984/20/6/064208
  11. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
  12. Soler J.M., Artacho E., Gale J.D., García A., Junque- ra J., Ordejón P., Sánchez-Portal D. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745. https://www.doi.org/10.1088/0953-8984/14/11/302
  13. Salahdin O.D., Sayadi H., Solanki R., Parra R.M.R., Al-Thamir M., Jalil A.T., Izzat S.E., Hammid A.T., Arenas L.A.B., Kianfar E. // Appl. Phys. A. 2022. V. 128. № 8. P. 703. https://www.doi.org/10.1007/s00339-022-05789-2
  14. Grimme S. // J. Comput. Chem. 2006. V. 27. № 15. P. 1787. https://www.doi.org/10.1002/jcc.20495
  15. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://www.doi.org/10.1063/1.3382344
  16. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://www.doi.org/10.1103/PhysRevLett.77.3865
  17. Dion M., Rydberg H., Schröder E., Langreth D.C., Lundqvist B.I. // Phys. Rev. Lett. 2004. V. 92. № 24. P. 246401. https://www.doi.org/10.1103/PhysRevLett.92.246401
  18. Berland K., Hyldgaard P. // Phys. Rev. B. 2014. V. 89. № 3. P. 035412. https://www.doi.org/10.1103/PhysRevB.89.035412
  19. Abinit’s pseudo database (2023) Fritz-Haber-Institute (FHI). https://departments.icmab.es/leem/SIESTA_MATERIAL/Databases/Pseudopotentials/periodictable-intro.html. Cited 20 May 2023.
  20. Созыкин С.А., Бескачко В.П., Вяткин Г.П. // Вестник ЮУрГУ. Серия “Математика. Механика. Физика”. 2015. T. 7. № 3. C. 78.
  21. Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. № 4. P. 553. https://www.doi.org/10.1080/00268977000101561
  22. Anikina E.V., Beskachko V.P. // Bull. South Ural State Univ. Ser. “Mathematics. Mech. Physics.” 2020. V. 12. № 1. P. 55. https://www.doi.org/10.14529/mmph200107
  23. Artacho E., Sánchez-Portal D., Ordejón P., García A., Soler J.M. // Physica Status Solidi B. 1999. V. 215. Iss. 1. P. 809. https://www.doi.org/10.1002/(SICI)1521-3951 (199909)215:1<809::AID-PSSB809>3.0.CO;2-0
  24. Anikina E., Naqvi S.R., Bae H., Lee H., Luo W., Ahuja R., Hussain T. // Int. J. Hydrogen Energy. 2022. V. 47. № 19. P. 10654. https://www.doi.org/10.1016/j.ijhydene.2022.01.126

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The atomic structure of the modeling cell of a tetraoxo monolayer[8]in a circular. Carbon atoms are indicated in gray, oxygen atoms in red. The boundaries of the simulation cell are marked with a solid black line. All images of structures were obtained using the VESTA 3 software package. Link lengths after geometry optimization in the VASP package (in parentheses are the values after optimization in SIESTA): 1 – 1.38 (1.39); 2 – 1.41 (1.42); 3 – 1.40 (1.40); 4 – 1.42 (1.43); 5 – 1.41 (1.41); 6 – 1.46 (1.46) Ok.

Download (489KB)
3. Fig. 2. Dependences of the total energy of the cell of the tetraoxo[8]circulene Etot monolayer, the parameter P and the charge transferred to the oxygen atom QO on: (a) the radius of trimming r of the O2p orbital; (b) the SplitNorm parameter (sets the radius of trimming rm of the modified orbital). The oxygen charge is given at the base of the columns (1). a0 = 0.529 Å.

Download (366KB)
4. Fig. 3. Dependences of the hydrogen binding energy in the O1 configuration on the distance d between the center of the H2 molecule and the TOC monolayer, calculated before and after correcting the error of the superposition of the basic set in the geometry of the structure. The results are given for the PBE+D2 approximation and the atomically similar basis generated by default in the SIESTA package.

Download (175KB)
5. Fig. 4. Atomic structures of tetraoxo[8]circulin with an adsorbed hydrogen molecule optimized in the PBE+D2 approximation in the PV basis. The atoms of carbon, oxygen and hydrogen are indicated in gray, red and green, respectively. All distances d between the monolayer and the center of the H2 molecule are given in Å.

Download (415KB)
6. Fig. 5. The binding energy E bind and the distance between the H2 center and the TOC monolayer, calculated with dispersion corrections for the four most energetically advantageous configurations. The results with Grimm's corrections were obtained in the VASP package, with analytical vdW functionality – in the SIESTA package.

Download (372KB)

Copyright (c) 2024 Russian Academy of Sciences