Tetraoxa[8]circulene monolayer as hydrogen storage material: model with Boys–Bernardi corrections within density functional theory
- Authors: Anikina E.V.1, Babailova D.V.1, Zhilin M.S.1, Beskachko V.P.1
-
Affiliations:
- Institute of Natural Sciences and Mathematics, South Ural State University
- Issue: No 1 (2024)
- Pages: 23-32
- Section: Articles
- URL: https://gynecology.orscience.ru/1028-0960/article/view/664682
- DOI: https://doi.org/10.31857/S1028096024010049
- EDN: https://elibrary.ru/DPYRHN
- ID: 664682
Cite item
Abstract
The parameters of molecular hydrogen adsorption on a tetraoxa[8]circulene monolayer were studied using the density functional theory with dispersion interaction corrections (semi-empirical and analytical). The calculations were carried out using two different approaches to the system wave function representation: atomic-like orbital basis set and plane wave basis. Utilizing a less computationally expensive pseudoatomic basis, it is possible to obtain results for molecular hydrogen adsorption consistent with values calculated with plane waves if the atomic-like basis is optimized and basis set superposition error is corrected for both hydrogen binding energy and geometrical characteristics. Otherwise, the H2 binding energy will be overestimated by 4–6 times (sometimes even more, by 20); and the hydrogen-monolayer distance will be underestimated by 10-20%. The obtained optimized parameters of the pseudoatomic basis set can be used for further study of the modified forms of the tetraoxa[8]circulene monolayer. Moreover, our calculations showed that the hydrogen binding to a pristine tetraoxa[8]circulene monolayer is predominantly van der Waals with an energy of 60–90 meV, which is several times less than the desired range of 200–600 meV. To achieve such values, it will be necessary to modify the surface of the monolayer, creating more active sorption cites, for example, by decorating it with metals or applying structural defects.
Full Text

About the authors
E. V. Anikina
Institute of Natural Sciences and Mathematics, South Ural State University
Author for correspondence.
Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk
D. V. Babailova
Institute of Natural Sciences and Mathematics, South Ural State University
Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk
M. S. Zhilin
Institute of Natural Sciences and Mathematics, South Ural State University
Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk
V. P. Beskachko
Institute of Natural Sciences and Mathematics, South Ural State University
Email: anikate@inbox.ru
Russian Federation, 454080, Chelyabinsk
References
- Simanullang M., Prost L. // Int. J. Hydrogen Energy. 2022. V. 47. № 69. P. 29808. https://www.doi.org/10.1016/j.ijhydene.2022.06.301
- Wang Y., Yang P., Zheng L., Shi X., Zheng H. // Energy Storage Materials. 2020. V. 26. P. 349. https://doi.org/10.1016/j.ensm.2019.11.006
- Anglada E., Soler J.M., Junquera J., Artacho E. // Phys. Rev. B. 2002. V. 66. № 20. P. 205101. https://www.doi.org/10.1103/PhysRevB.66.205101
- Ferre-Vilaplana A. // J. Chem. Phys. 2005. V. 122. № 10. P. 104709. https://www.doi.org/10.1063/1.1859278
- Vilela Oliveira D., Laun J., Peintinger M.F., Bre- dow T. // J. Comput. Chem. 2019. V. 40. № 27. P. 2364. https://www.doi.org/10.1002/jcc.26013
- Begunovich L.V., Kuklin A.V., Baryshnikov G.V., Valiev R.R., Ågren H. // Nanoscale. 2021. V. 13. № 9. P. 4799. https://www.doi.org/10.1039/D0NR08554E
- Fritz P.W., Chen T., Ashirov T., Nguyen A.D., Dincă M., Coskun A. // Angew. Chemie. 2022. V. 61. № 17. P. e202116527. https://www.doi.org/10.1002/anie.202116527
- Baryshnikov G.V., Minaev B.F., Karaush N.N., Minae-va V.A. // RSC Adv. 2014. V. 4. № 49. P. 25843. https://www.doi.org/10.1039/c4ra02693d
- Karaush-Karmazin N., Baryshnikov G., Minaeva V., Panchenko O., Minaev B. // Comput. Theor. Chem. 2022. V. 1217. P. 113900. https://www.doi.org/10.1016/j.comptc.2022.113900
- Artacho E., Anglada E., Diéguez O., Gale J.D., García A., Junquera J., Martin R.M., Ordejón P., Pruneda J.M., Sánchez-Portal D., Soler J.M. // J. Phys. Condens. Matter. 2008. V. 20. № 6. P. 064208. https://www.doi.org/10.1088/0953-8984/20/6/064208
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
- Soler J.M., Artacho E., Gale J.D., García A., Junque- ra J., Ordejón P., Sánchez-Portal D. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745. https://www.doi.org/10.1088/0953-8984/14/11/302
- Salahdin O.D., Sayadi H., Solanki R., Parra R.M.R., Al-Thamir M., Jalil A.T., Izzat S.E., Hammid A.T., Arenas L.A.B., Kianfar E. // Appl. Phys. A. 2022. V. 128. № 8. P. 703. https://www.doi.org/10.1007/s00339-022-05789-2
- Grimme S. // J. Comput. Chem. 2006. V. 27. № 15. P. 1787. https://www.doi.org/10.1002/jcc.20495
- Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://www.doi.org/10.1063/1.3382344
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://www.doi.org/10.1103/PhysRevLett.77.3865
- Dion M., Rydberg H., Schröder E., Langreth D.C., Lundqvist B.I. // Phys. Rev. Lett. 2004. V. 92. № 24. P. 246401. https://www.doi.org/10.1103/PhysRevLett.92.246401
- Berland K., Hyldgaard P. // Phys. Rev. B. 2014. V. 89. № 3. P. 035412. https://www.doi.org/10.1103/PhysRevB.89.035412
- Abinit’s pseudo database (2023) Fritz-Haber-Institute (FHI). https://departments.icmab.es/leem/SIESTA_MATERIAL/Databases/Pseudopotentials/periodictable-intro.html. Cited 20 May 2023.
- Созыкин С.А., Бескачко В.П., Вяткин Г.П. // Вестник ЮУрГУ. Серия “Математика. Механика. Физика”. 2015. T. 7. № 3. C. 78.
- Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. № 4. P. 553. https://www.doi.org/10.1080/00268977000101561
- Anikina E.V., Beskachko V.P. // Bull. South Ural State Univ. Ser. “Mathematics. Mech. Physics.” 2020. V. 12. № 1. P. 55. https://www.doi.org/10.14529/mmph200107
- Artacho E., Sánchez-Portal D., Ordejón P., García A., Soler J.M. // Physica Status Solidi B. 1999. V. 215. Iss. 1. P. 809. https://www.doi.org/10.1002/(SICI)1521-3951 (199909)215:1<809::AID-PSSB809>3.0.CO;2-0
- Anikina E., Naqvi S.R., Bae H., Lee H., Luo W., Ahuja R., Hussain T. // Int. J. Hydrogen Energy. 2022. V. 47. № 19. P. 10654. https://www.doi.org/10.1016/j.ijhydene.2022.01.126
Supplementary files
